skip to main content
article
Free Access

A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields

Published:03 January 1995Publication History
Skip Abstract Section

Abstract

We define the notion of a well-separated pair decomposition of points in d-dimensional space. We then develop efficient sequential and parallel algorithms for computing such a decomposition. We apply the resulting decomposition to the efficient computation of k-nearest neighbors and n-body potential fields.

References

  1. ~AARSETH, S. J., GOTr, J. R., III, AND TURNER, E. L. 1979. N-body simulations of galaxy ~clustering. I. Initial conditions and galaxy collapse times. Astrophys. J. 228, 664-683.Google ScholarGoogle Scholar
  2. ~ABRAHAMSON, K., DADOUN, N., KIRKPATRICK, D. A., AND PRZYTCHKA, T. 1989. A simple parallel ~tree contraction algorithm. J. Algorithms 10, 2, 287-302. Google ScholarGoogle Scholar
  3. ~ABRAMSON, N. 1963. Information Theory and Coding. McGraw-Hill, New York.Google ScholarGoogle Scholar
  4. ~AGARWAL, P. K., EDELSBRUNNER, H., SCHWARTZKOPF, O., AND WELZL, E. 1991. Euclidean ~minimum spanning trees and bichromatic closest pairs. Disc. Computat. Geom. 6, 407-422. Google ScholarGoogle Scholar
  5. ~AGARWAL, P. K., AND MATOU~EK, J. 1992. Relative neighborhood graphs in three dimensions. In ~Proceedings of the 3rd Annual Sympostum on Discrete Algorithms. ACM-SIAM, New York and ~Philadelphia, pp. 58-65. Google ScholarGoogle Scholar
  6. ~APPEL, A. W. 1985. An efficient program for many-body simulation. SIAM J. Sci. Star. Comput. ~6, 85-103.Google ScholarGoogle Scholar
  7. ~BARNES, J., AND HUT, P. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature ~~ 324, 4, 446-449.Google ScholarGoogle Scholar
  8. ~BENTLEY, J. L. 1980. Multidimensional divide-and-conquer. Commun. ACM 23, 4 (Apr), 214-229. Google ScholarGoogle Scholar
  9. ~CALLAHAN, P. B., AND KOSAP, AJU, S. R. 1992. A decomposition of multi-dimensional point-sets ~with applications to k-nearest-neighbors and n-body potential fields. In Proceedings of the 24th ~Annual Symposium on the Theory of Computing (Victoria, B. C., Canada, May 4-6). ACM, New ~York, pp. 546-556. Google ScholarGoogle Scholar
  10. ~COLE, R., AND GOODRICH, M. T. 1988. Optimal parallel algorithms for polygon and point-set ~problems. In Proceedings of the 4th ACM Symposium on Computational Geometry (Urbana- ~Champaign, IlL, June 6-8). ACM, New York, pp. 201-210. Google ScholarGoogle Scholar
  11. ~COLE, R., AND GOODRICH, M. T. 1992. Optimal parallel algorithms for point-set and polygon ~problems. Algorithmica 7, 3-23.Google ScholarGoogle Scholar
  12. ~FRIEZE, A. M., MILLER, G. L., AND TENG, S.-H. 1992. Separator based parallel divide and ~Algorithms andArch~tectures (San Diego, Calif., June 29-July 1). ACM, New York, pp. 420-429. Google ScholarGoogle Scholar
  13. ~OAZIT, H., MILLER, O. L., AND TENG, S.-H. 1988. Optimal tree contraction in the EREW model. ~In Concurrent Computations, S. K. Tewsburg, B. W. Dickinson, and S. C. Schwartz, eds. Plenum ~Publishing, New York, pp. 139-155.Google ScholarGoogle Scholar
  14. ~GREENGARD, L. F. 1988. The Rapid Evaluation of Potential Ftelds in Particle Systems. The MIT ~Press, Cambridge, Mass.Google ScholarGoogle Scholar
  15. ~GREENGARD, L., AND GROPP, W. D. 1990. A parallel version of the fast multipole method ~Computers Math. Applic. 20, 7, 63-71.Google ScholarGoogle Scholar
  16. ~GREENGARD, m., AND ROKHLIN, V. 1987. A fast algorithm for particle simulations, J. Comput ~Physics 73, 325-348. Google ScholarGoogle Scholar
  17. ~HAFNER, C., AND mUSTER, N. 1991. Computations of electromagnetic fields by the multiple ~multipole method (generalized multipole technique). Radio Sci. 26, 1, 291-297.Google ScholarGoogle Scholar
  18. ~KATZENELSON, J. 1989. Computational structure of the N-body problem. SIAM J. Sci. Star ~Comput. 10, 4 (July), 787-815. Google ScholarGoogle Scholar
  19. ~KOSARAJU, S. R., AND DELCHER, A. L. 1988. Optimal parallel evaluation of tree-structured ~computations by raking. In VLSI Algorithms and Architectures: Proceedings of the 3rd Aegean ~Workshop on Computing, J. Reif, ed. Springer-Verlag, New York, pp. 101-110. Google ScholarGoogle Scholar
  20. ~MILLER, G. L., TENG, S.-H. AND VAVASIS, S. A. 1991. A unified geometric approach to graph ~separators. In Proceedings of the 32nd Annual Symposium on Foundatzons Computer Science ~IEEE, New York, pp. 538-547. Google ScholarGoogle Scholar
  21. ~MILLER, R. H., AND PRENDERGAST, K. H. 1968. Stellar dynamics in a discrete phase space ~Astrophys. J. 151, 699-709.Google ScholarGoogle Scholar
  22. ~MILLER, R. H., PRENDERGAST, K. H. AND QUIRK, W. J. 1970. Numerical experiments on spiral ~structure. Astrophys. J. 161, 903 916.Google ScholarGoogle Scholar
  23. ~PAN, V. Y., REIF, J. H., AND TATE, S. R. 1992. The power of combining the techniques oJ ~algebraic and numerical computing: Improved approximate multipoint polynomial evaluation ~and improved multipole algorithms. In Proceedings of the 32nd Annual Symposium of Founda- ~ttons of Computer Science. IEEE New York, pp. 703-7t3.Google ScholarGoogle Scholar
  24. ~PREPARATA, F. P., AND SHAMOS, M. I. 1985. Computational Geometry. An Introduction. Springer- ~Verlag, New York. Google ScholarGoogle Scholar
  25. ~REIF, J. H., AND TARE, S. R. 1992. N-body simulation I: Potential field evaluation. Technical ~report, Comput. Sci. Dept., Duke Univ.Google ScholarGoogle Scholar
  26. ~ROKHL1N, V. 1985. Rapid solution of integral equations of classical potential theory. J. Compu- ~tat. Phys. 60, 187-207.Google ScholarGoogle Scholar
  27. ~SCHMIDT, K. E., AND LEE, M. m. 1991. Implementing the fast multipole method in three ~dimensions. J. Star. Phys. 63 5-6 (June), 1223-1235.Google ScholarGoogle Scholar
  28. ~VAIDYA, P. M. 1986. An optimal algorithm for the all-nearest-neighbors problem. In Proceedin&, ~of the 27th Annual Sympostum Foundations of Computer Science. IEEE, New York, pp. 117-122Google ScholarGoogle Scholar
  29. ~AIDYA, P. M. 1989. An O(n log n) algorithm for the all-nearest-neighbors problem. Disc ~omputat. Geom. 4, 101-115. Google ScholarGoogle Scholar
  30. ~YAO, A. C. 1982. On constructing minimum spanning trees in k-dimensional space and related ~problems. SIAM J. Comput. 11,721-736.Google ScholarGoogle Scholar
  31. ~ZHAO, F., AND JOHNSSON, S. L. 1991. The parallel multipole method on the Connection ~Machine. SIAM J. Sct. Stat. Comput. 12, 6, 1420-1437. Google ScholarGoogle Scholar

Index Terms

  1. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Journal of the ACM
            Journal of the ACM  Volume 42, Issue 1
            Jan. 1995
            289 pages
            ISSN:0004-5411
            EISSN:1557-735X
            DOI:10.1145/200836
            Issue’s Table of Contents

            Copyright © 1995 ACM

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 3 January 1995
            Published in jacm Volume 42, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader