skip to main content
research-article

Discrete Laplacians on general polygonal meshes

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

While the theory and applications of discrete Laplacians on triangulated surfaces are well developed, far less is known about the general polygonal case. We present here a principled approach for constructing geometric discrete Laplacians on surfaces with arbitrary polygonal faces, encompassing non-planar and non-convex polygons. Our construction is guided by closely mimicking structural properties of the smooth Laplace--Beltrami operator. Among other features, our construction leads to an extension of the widely employed cotan formula from triangles to polygons. Besides carefully laying out theoretical aspects, we demonstrate the versatility of our approach for a variety of geometry processing applications, embarking on situations that would have been more difficult to achieve based on geometric Laplacians for simplicial meshes or purely combinatorial Laplacians for general meshes.

Skip Supplemental Material Section

Supplemental Material

tp108_11.mp4

mp4

52.9 MB

References

  1. Belkin, M., Sun, J., and Wang, Y. 2008. Discrete Laplace operator on meshed surfaces. In Proc. of the 24th annual Symposium on Computational Geometry, 278--287. Google ScholarGoogle Scholar
  2. Bobenko, A. I., and Springborn, B. A. 2007. A discrete Laplace--Beltrami operator for simplicial surfaces. Discrete and Computational Geometry 38, 4, 740--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brezzi, F., Lipnikov, K., and Shashkov, M. 2005. Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Num. Anal. 43, 1872--1896. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brezzi, F., Lipnikov, K., and Simoncini, V. 2005. A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15, 1533--1553.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chen, R., Xua, Y., Gotsman, C., and Liu, L. 2010. A spectral characterization of the Delaunay triangulation. Computer Aided Geometric Design 27, 4, 295--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of ACM SIGGRAPH, 317--324. Google ScholarGoogle Scholar
  7. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of triangle meshes. Computer Graphics Forum (Proc. of Eurographics), 209--218.Google ScholarGoogle Scholar
  8. Desbrun, M., Hirani, A., Leok, M., and Marsden, J. E. 2005. Discrete exterior calculus. arXiv:math.DG/0508341.Google ScholarGoogle Scholar
  9. Dey, T., Ranjan, P., and Wang, Y. 2010. Convergence, stability, and discrete approximation of Laplace spectra. In Proceedings of SODA, 650--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Duffin, R. 1959. Distributed and Lumped Networks. Journal of Mathematics and Mechanics 8, 793--825.Google ScholarGoogle Scholar
  11. Dyer, R., and Schaefer, S., 2009. Circumcentric dual cells with negative area. Technical Report CMPT2009-6.Google ScholarGoogle Scholar
  12. Dziuk, G. 1988. Finite elements for the Beltrami operator on arbitrary surfaces. In Partial Differential Equations and Calculus of Variations, vol. 1357 of Lec. Notes Math. Springer, 142--155.Google ScholarGoogle Scholar
  13. Glickenstein, D. 2007. A monotonicity property for weighted Delaunay triangulations. Discrete and Computational Geometry 38, 651--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grinspun, E., Gingold, Y., Reisman, J., and Zorin, D. 2006. Computing discrete shape operators on general meshes. Eurographics (Computer Graphics Forum) 25, 547--556.Google ScholarGoogle ScholarCross RefCross Ref
  15. Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Sympos. Geom. Processing, 127--137. Google ScholarGoogle Scholar
  16. Gu, X. D., Guo, R., Luo, F., and Zeng, W. 2010. Discrete Laplace--Beltrami operator determines discrete Riemannian metric. arXiv:1010.4070.Google ScholarGoogle Scholar
  17. Hildebrandt, K., Polthier, K., and Wardetzky, M. 2006. On the convergence of metric and geometric properties of polyhedral surfaces. Geometricae Dedicata 123, 89--112.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, D., Xu, G., and Zhang, Q. 2008. A discrete scheme of Laplace--Beltrami operator and its convergence over quadrilateral meshes. Computers and Mathematics with Applications 55, 1081--1093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Communications in Mathematical Physics 218, 1, 177--216.Google ScholarGoogle ScholarCross RefCross Ref
  21. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds. Springer, 35--57.Google ScholarGoogle Scholar
  22. Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral conformal parameterization. Computer Graphics Forum (Proc. of SGP) 27, 5, 1487--1494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Perot, J., and Subramanian, V. 2007. Discrete calculus methods for diffusion. Journal of Comp. Physics 224, 1, 59--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  25. Rippa, S. 1990. Minimal roughness property of the Delaunay triangulation. Computer Aided Geometric Design 7, 489--497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rosenberg, S. 1997. The Laplacian on a Riemannian manifold. No. 31 in Student Texts. London Math. Soc.Google ScholarGoogle Scholar
  27. Shafiqul-Islam, M., and Rathod, H. 2006. Alternative approach of numerical integration for rational functions related to linear convex quadrilateral finite elements. Journal of App. Sciences Research 2, 9, 533--540.Google ScholarGoogle Scholar
  28. Sullivan, J. 2008. Curvatures of smooth and discrete surfaces. In Discrete Differential Geometry, A. I. Bobenko, J. M. Sullivan, P. Schröder, and G. Ziegler, Eds. Birkhäuser Basel, 175--188.Google ScholarGoogle Scholar
  29. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. 2007. Discrete Quadratic Curvature Energies. Computer Aided Geometric Design 24, 499--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: No free lunch. In Siggraph/Eurographics Sympos. Geom. Processing, 33--37. Google ScholarGoogle Scholar
  31. Xiong, Y., Li, G., and Han, G. 2011. Mean Laplace--Beltrami operator for quadrilateral meshes. In Transactions on Edutainment V, Springer, 189--201. Google ScholarGoogle Scholar
  32. Xu, G. 2004. Discrete Laplace-Beltrami operators and their convergence. Computer Aided Geometric Design 21, 8, 767--784. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Discrete Laplacians on general polygonal meshes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 30, Issue 4
          July 2011
          829 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2010324
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 July 2011
          Published in tog Volume 30, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader