skip to main content
10.1145/1958746.1958789acmconferencesArticle/Chapter ViewAbstractPublication PagesicpeConference Proceedingsconference-collections
abstract

IO performance prediction in consolidated virtualized environments

Published:30 September 2011Publication History

ABSTRACT

We propose a trace-driven approach to predict the performance degradation of disk request response times due to storage device contention in consolidated virtualized environments. Our performance model evaluates a queueing network with fair share scheduling using trace-driven simulation. The model parameters can be deduced from measurements obtained inside Virtual Machines (VMs) from a system where a single VM accesses a remote storage server. The parameterized model can then be used to predict the effect of storage contention when multiple VMs are consolidated on the same virtualized server. The model parameter estimation relies on a search technique that tries to estimate the splitting and merging of blocks at the the Virtual Machine Monitor (VMM) level in the case of multiple competing VMs. Simulation experiments based on traces of the Postmark and FFSB disk benchmarks show that our model is able to accurately predict the impact of workload consolidation on VM disk IO response times.

References

  1. blktrace-linux man page. http://linux.die.net/man/8/ blktrace.Google ScholarGoogle Scholar
  2. FFSB-v6.0-rc2. http://sourceforge.net/projects/ffsb.Google ScholarGoogle Scholar
  3. openfiler. http://www.openfiler.com.Google ScholarGoogle Scholar
  4. Postmark-1.51-7. http://packages.debian.org/sid/ postmark.Google ScholarGoogle Scholar
  5. RHEL 5 IO tuning guide. http://www.redhat.com/docs/ wp/performancetuning/iotuning/index.html.Google ScholarGoogle Scholar
  6. Storage queues and performance. http://communities. vmware.com/docs/DOC-6490.Google ScholarGoogle Scholar
  7. vmware. http://www.vmware.com.Google ScholarGoogle Scholar
  8. I. Ahmad. Easy and efficient disk I/O workload characterization in VMware ESX server. In IISWC, pages 149-158. IEEE, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. I. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo, and V. Makhija. An analysis of disk performance in VMware ESX server virtual machines. In WWC-6, pages 65-76. IEEE, 2003.Google ScholarGoogle Scholar
  10. J. Axboe. Linux block IO - present and future. In Linux Symposium, pages 51-61, 2004.Google ScholarGoogle Scholar
  11. F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed networks of queues with different classes of customers. J. ACM, 22(2):248-260, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. F. Benevenuto, C. Fernandes, M. Santos, V. Almeida, J. Almeida, G. Janakiraman, and J. Santos. Performance models for virtualized applications. In ISPA, volume 4331 of LNCS, pages 427-439. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. N. Bennani and D. A. Menasce. Resource allocation for autonomic data centers using analytic performance models. In ICAC, pages 229-240. IEEE, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Boutcher and A. Chandra. Does virtualization make disk scheduling passé? SIGOPS OSR, 44(1):20-24, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. D. Brunelle. blktrace user guide, 2007.Google ScholarGoogle Scholar
  16. G. Casale, N. Mi, and E. Smirni. Bound analysis of closed queueing networks with workload burstiness. In SIGMETRICS, pages 13-24. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Casale, E. Z. Zhang, and E. Smirni. KPC-toolbox: Simple yet effective trace fitting using markovian arrival processes. In QEST, pages 83-92, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared data centers using online measurements. In IWQoS, pages 381-398. Springer, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. In SIGCOMM, pages 1-12. ACM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Goyal, H. M. Vin, and H. Chen. Start-time fair queueing: A scheduling algorithm for integrated services packet switching networks. In SIGCOMM, pages 157-168. ACM, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA: Proportional allocation of resources for distributed storage access. In FAST, pages 85-98. USENIX, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization and consolidation in virtualized environments. In VPACT, 2009.Google ScholarGoogle Scholar
  23. W. Jin, J. S. Chase, and J. Kaur. Interposed proportional sharing for a storage service utility. ACM PEVA, 32(1):37-48, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu. Generating adaptation policies for multi-tier applications in consolidated server environments. In ICAC, pages 23-32, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An analysis of performance interference effects in virtual environments. In ISPASS, pages 200-209. IEEE, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. Application performance modeling in a virtualized environment. In HPCA, pages 1-10, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  27. E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel. Performance impacts of autocorrelated flows in multitiered systems. Elsevier PEVA, 64(9-12):1082-1101, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Performance evaluation of virtualization technologies for server consolidation. Technical Report HPL-2007-59, HP Laboratories Palo Alto, 2007.Google ScholarGoogle Scholar
  30. M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R. Ganger. Storage device performance prediction with cart models. In MASCOTS, pages 588-595. IEEE, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. IO performance prediction in consolidated virtualized environments

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ICPE '11: Proceedings of the 2nd ACM/SPEC International Conference on Performance engineering
      March 2011
      470 pages
      ISBN:9781450305198
      DOI:10.1145/1958746

      Copyright © 2011 Authors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 September 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • abstract

      Acceptance Rates

      Overall Acceptance Rate252of851submissions,30%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader