skip to main content
article
Free Access

The computation of optical flow

Published:01 September 1995Publication History
Skip Abstract Section

Abstract

Two-dimensional image motion is the projection of the three-dimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of time-orderedimages allow the estimation of projected two-dimensional image motion as either instantaneous image velocities or discrete image displacements. These are usually called the optical flow field or the image velocity field. Provided that optical flow is a reliable approximation to two-dimensional image motion, it may then be used to recover the three-dimensional motion of the visual sensor (to within a scale factor) and the three-dimensional surface structure (shape or relative depth) through assumptions concerning the structure of the optical flow field, the three-dimensional environment, and the motion of the sensor. Optical flow may also be used to perform motion detection, object segmentation, time-to-collision and focus of expansion calculations, motion compensated encoding, and stereo disparity measurement. We investigate the computation of optical flow in this survey: widely known methods for estimating optical flow are classified and examined by scrutinizing the hypothesis and assumptions they use. The survey concludes with a discussion of current research issues.

References

  1. ADELSON, E H. AND BERGEN, J R. 1986. The early detection of motion boundaries. In iEEE Proceedings o/' Workshop on Vtsual Motzon (Charleston, S.C., May). 151 156.Google ScholarGoogle Scholar
  2. ADELSON, E H. mNo BERGEN, J. R. 1985 Spatiotemporal energy models for the perception of motion d. Opt Soc Am A2, 2,284 299Google ScholarGoogle Scholar
  3. ADR5 G. 1985. Determining three-d~mensmnal motion and structure from optical flow generated by several movmg objects. IEEE PAMI 7, 4, 384 401.Google ScholarGoogle Scholar
  4. AGGARWAL, J. K AND NANDHAKUMAR, N 1988 On the computation of motion from sequences of images a review. Prom IEEE 76, S, 917 935Google ScholarGoogle Scholar
  5. AISBETT, J. 1989. Optical flow w~th intensityweighted smoothing. IEEE PA34I 11, 5 (1984), 512 522. Google ScholarGoogle Scholar
  6. ALOIMONOS, J. AND BROWN, C M 1984 Direct processing of curvilinear sensor motion from a sequence of perspective images. In IEEE Proceedzng~ of Workshop on Computer Vlston: Representatmn and Control (Annapolis, Md, April-May), IEEE, 72 77Google ScholarGoogle Scholar
  7. ALOiMONOS, J. AND RISTIGOUS, I. 1986 Determining the 3d motion of a m~d planar patch without correspondence, under perspective projection. In IEEE Proceedings of Workshop on Motion, Representatzon and Analyszs (Annapohs, Md., April May), IEEE. 167 174Google ScholarGoogle Scholar
  8. ANAND~X5 P. 1989. A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. -Vzszon 2,283-310.Google ScholarGoogle Scholar
  9. ANCONA, N. 1992. A fast obstacle detection method based on optical flow In Proceedings of ECCV (Santa Margherita, Llgure, Italy, May), Springer Verlag, 267-271. Google ScholarGoogle Scholar
  10. BARMAN, H. 1991. Hmrarchmal curvature estimation m computer vision, Univ. of Linkopmg, Dept. of Electrical Engineering, Ph.D. Thesis.Google ScholarGoogle Scholar
  11. BARMAN, H., HAGLUND, L, KNUTSSON, H., AND GRANLUND, G.H. 1991. Estimatmn of velocity, acceleratmn, and disparity m t~me sequences. In IEEE Proceedings of Workshop on Vzsual Motmn (Irvine, Calif., March), 44 51Google ScholarGoogle Scholar
  12. BARNARD, S. T. mwD THOMPSON, W. B 1980 Disparity analysis of images IEEE PAMI 2, 4, 333-340.Google ScholarGoogle Scholar
  13. BARREN, J. L. AND EAGLESON, R. 1995. Recurs~ve eshmatmn of time-varying motmn and structural parameters. Pattern Recogn. (m press). Google ScholarGoogle Scholar
  14. BARREN, J. L, FLEET, D. J., AND BEAUCHEMIN, S. S. 1994 Performance of optical flow techmques. Int. d. Comput Vis'mn 12, 1, 43 77. Google ScholarGoogle Scholar
  15. BARREN, J. L, JEPSON, A D., AND TSeTSeS, J K. 1990 The feaslMhty of motmn and structure from nomy brae-varying image velomty refermatron. Int. J. Comput. Vision 5, 3, 239 269 Google ScholarGoogle Scholar
  16. BARREN, J. L. AND LIPTAY, A 1994. Optic flow to measure mmute increments in plant growth. Bmlrnagmg 2, 57-61Google ScholarGoogle Scholar
  17. BATrlTi, R, AMALDL E., AND KOCH, C. 1991. Computing optical flow across multiple scales: An adaptive coarse-to-fine strategy. Int. J. Cornput. Vzsmn 6, 2, 133 145. Google ScholarGoogle Scholar
  18. BEAUCHEMIN, S S AND BARRON, J. L 1995 The structure of occlusion in Foumer space In Vls/on Interface (Quebec City, Canada, May) 112-119Google ScholarGoogle Scholar
  19. BERGEN, J. R., ANANDAN, P., HANNA, K. J., AND E{INGORANi, R. 1992 Hierarchical modelbased motmn estimatmn. In Procee&ngs of ECCV (Santa Marghemta, Italy). Springer Vetlag, 237-252. Google ScholarGoogle Scholar
  20. BERGEN, J. R. BURT, P J, HINGORANI, R., AND PELF~G, S. 1992 Three-frame algorithm for estimating two-component image motmn. IEEE PAMI 14, 9, 886-896 Google ScholarGoogle Scholar
  21. BLACK, M. J. 1992. Robust incremental optical flow. Yale Umverslty, New Haven, CT, Ph.D. Thesis. Google ScholarGoogle Scholar
  22. BLACK, M J. 1991. A robust gradient-method for determining optical flow Tech. Rep. YALEU/DCS/RR-891, Yale University, New Haven, CT.Google ScholarGoogle Scholar
  23. BLACK, M. J. AND ANANDAN, P. 1993 A framework for robust estimation of optical flow. In Proceedings oflCCV (Berlin, May), 231 236Google ScholarGoogle Scholar
  24. BLACK, M J. ANn ANANDAN, P. 1991 Robust dynamic motion estimation over t~me In Proceedrags IEEE CVPR (Los Alamitos, CAI, 296-302.Google ScholarGoogle Scholar
  25. BLACK, M J. AND ANANDAN, P. 1990. A model for the detectmn of motmn over t~me. In Proceedrags of ICCV (Osaka, Dec ), 33 37.Google ScholarGoogle Scholar
  26. BLACK, M. J. AND JEPSON, A. 1994 Estimating optical flow in segmented nnages using variable-order parametric models with local deforraations. Tech. Rep SPL-94-053, Xerox Systems and Practices Laboratory, Palo Alto, CAGoogle ScholarGoogle Scholar
  27. BOBER, M. AND 14ATTLER, J 1994 Robust morton analyms In IEEE Proceedings of CVPR (Seattle, WA, June), 947-952Google ScholarGoogle Scholar
  28. BOUTHEMY, P.~ND FRANCOIS, E. 1993. Motion segmentation and qualitative dynamic scene analyas from an image sequence. Int. J. Cornput Vlston 10, 2, 159-182 Google ScholarGoogle Scholar
  29. BURLINA, P. AND CHELLAPPA, R. 1994. Time-to-x: Analysis of motion through temporal parameters. In Proceedings IEEE CVPR (Seattle, WA, June), 461-468Google ScholarGoogle Scholar
  30. BURT, P. J. AND ADELSON, E.H. 1983. The Laplaclan pyramid as a compact image code. iEEE Trans. Cornmun. 31,532 540.Google ScholarGoogle Scholar
  31. BURT, P. J., HINGORANI, R., AND KOLCZYNSKI, R. J. 1991. Mechanisms for Isolating component patterns in the sequential analysis of multiple motion. In IEEE Proceedings of Workshop on V~sual Morton (Princeton, NJ, Oct.), 187 194.Google ScholarGoogle Scholar
  32. BUXTON, B. F. AND BUXTON, H. 1984. Computation of optic flow from the motion of edge features in image sequences. Image Vision Cornpitt 2, 2, 59 75Google ScholarGoogle Scholar
  33. CAMPANI, M. AND VERm, A 1990. Computing optical flow from an overconstrained system of linear equations. In Proceedings of ICCV (Osaka, Dec.), 22 26.Google ScholarGoogle Scholar
  34. CARPENTIERi, B. AND STORER, J.A. 1992. A splitmerge parallel block-matching algorithm for video displacement estimation. In Data Comprcssion Conference (Snowbird, UT, March), 239-248.Google ScholarGoogle Scholar
  35. CmN, T. M., KARL, W., AND WiLLSKY, A. 1994. Probabihstic and sequential computation of optical flow using temporal coherence. IEEE Trans. Image Process. 773 788.Google ScholarGoogle Scholar
  36. CHU, C. H. AND DELP, E. J. 1989. Estimating displacement vectors from an image sequence. J. Opt. Soc. Am. A 6, 6, 871-878Google ScholarGoogle Scholar
  37. CORNELWS, N. AND KANADE, T. 1983. Adapting optical flow to measure object motion in reflectance and x-ray image sequences. In Procee&ngs of ACM S~ggroph/Szgart Inter&scplinary Workshop on Motion (Toronto, April), ACM, New York, 50-58. Google ScholarGoogle Scholar
  38. CORNILLEAU-PERES, Y. AND DROULEZ, J. 1990. Stereo correspondence from optical flow. In Proceedings of ECCV (Antibes, France, April), 326 330. Google ScholarGoogle Scholar
  39. DARRELL, T. AND PENTLAND, A. 1991. Robust estimation of a multi-layered motion representation. In IEEE Proceedings of Workshop on Vzsual Motion (Princeton, NJ, Oct.), 173-178.Google ScholarGoogle Scholar
  40. DUBOIS, E. 1985. The sampling and reconstruction of time-varying imagery with application in video systems. Proc. IEEE 73, 4. 502 522.Google ScholarGoogle Scholar
  41. DUNCAN, J. H. AND CHOU, T. 1992. On the detectmn of motion and the computation of optical flow. IEEE PAMI 14, 3, 346 352. Google ScholarGoogle Scholar
  42. DUTTA, R., MANMATHA, R., WILLIAMS, L., AND RISEMAN, E.M. 1989. A data set for quantitative motion analysis. In IEEE Proceedings of CVPR (San Diego, CA, June), 159 164.Google ScholarGoogle Scholar
  43. ENKELMANN, W. 1990. Obstacle detection by evaluation of optical flow fields fi'om image sequences. In Proceedings of ECCV (Antibes, France, April). 134-138. Google ScholarGoogle Scholar
  44. ENKELMANN, W. 1986. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. In IEEE Proceedmgs of Workshop on Motmn: Representation and Analysis (Charleston, SC, May), 81 87.Google ScholarGoogle Scholar
  45. FERMIN, I. ANn IMIYA, A. 1994. Two-dimensional motion computation by randomized method. Tech. Rep. TR ICS-4-6-1994, Dept of Information and Computer Sciences, Chiba University, Japan.Google ScholarGoogle Scholar
  46. FLEET, D.J. 1992. Measurement of Image Veloc- Ity. Kluwer Academic Publishers, Norwell, MA. Google ScholarGoogle Scholar
  47. FLEET, D. J. AND JEPSON, A.D. 1990. Computation of component image velocity from local phase information. Int. J. Comput. Vision 5, 1, 77-104. Google ScholarGoogle Scholar
  48. FLEET, D. J. AND LANGLEY, K. 1995a. Computational analysis of non-Fourier motion Vision Res. 34, 22, 3057 3079.Google ScholarGoogle Scholar
  49. FLEET, D. J. AND LANGLEY, K. 1995b. Recursive filters for optical flow. IEEE PAMI 17, 1. Google ScholarGoogle Scholar
  50. GEMAN, S. AND GEMAN, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE PAMI 6, 6 (Nov.), 721 741.Google ScholarGoogle Scholar
  51. GIACttETTI, A., CAMPANI, M., AND TORRE, V. 1994. The use of optical flow for autonomous navigation. In Proceedings of ECCV (Stockholm, May), 146-151. Google ScholarGoogle Scholar
  52. GLAZER, F.C. 1987a. Computation of optical flow by multilevel relaxation. Tech. Rep. COINS- TR-87-64, University of Massachusetts.Google ScholarGoogle Scholar
  53. GLAZER, F. C. 1987b. Hierarchical gradientbased motion detection. In DARPA Proceedings of Image Understanding Workshop (Los Angeles, CA, Feb.). 733 748.Google ScholarGoogle Scholar
  54. GONG, S. AND BRADY, M. 1990. Parallel computation of optic flow. In Proceedings ofECCV (Antibes, France, April), 124-133. Google ScholarGoogle Scholar
  55. GRZYWACZ, N M. AND YmLLE, A.L. 1990 A model for the estimate of local velocity by cells in the visual cortex. Proc. Royal Soczety London, B 239, 129 161.Google ScholarGoogle Scholar
  56. GUPTA, N., RAC~HAVAN, S., AND KANAL, L. 1993. Robust recovery of image motion. In Proceedrags of Asza Conference on Computer Vzs~on (Osaka, Japan, Nov.).Google ScholarGoogle Scholar
  57. HADDADI, N. AND KUO, C.-C. J. 1992. Computation of dense optical flow with a parametric smoothness model. Tech. Rep. USC-SIPI Report 223, Dept. of Electrical Engineering Systems, University of Southern Californm, 1992.Google ScholarGoogle Scholar
  58. HAGLUND, L. 1992. Adaptive multidimensional filtering. University of Linkoping, Dept. of Electrical Engineering, Ph.D. ThesisGoogle ScholarGoogle Scholar
  59. HANIISCEIACK, P. AND KLETTE, R. 1995. Evaluation of differential methods for image velocity measurement. Comput. Art~f Intell (to appear).Google ScholarGoogle Scholar
  60. HANNA, K.J. 1991. Direct multi-resolution estimation of ego-motion and structure from motion In IEEE Workshop on ~%ual Motion (Princeton, NJ), 156 162.Google ScholarGoogle Scholar
  61. H,~NA, K. J ~m'D OKAMOTO, N.E. 1993 Combining stereo and motion for direct estimation of scene structure In Proceedings of ICCV (Berlin, May), 357 365.Google ScholarGoogle Scholar
  62. H4RALICK, R. M AND LEE, J. S 1982 The facet approach to optic flow In DARPA Proceedings o/Image Understanding Workshop, (Pale Alto, CA, Sept.). 84-93.Google ScholarGoogle Scholar
  63. HAY, J.C. 1966 Optical motions and space perception: An extension of Gibson's analysis Psychological Rev 7,3, 6, 550-565.Google ScholarGoogle Scholar
  64. HEEGER, D J. 1988. Optmal flow using spatiotemporal filters. Int. d Comput. Vzamn 1, 279 302.Google ScholarGoogle Scholar
  65. HEEGER, D J. AND JEPSON, A. D 1992. Subspace methods for recovering rigad matron 2: Algorithm and implementation lnt. J Comput. V~- szon 7, 2, 95 117. Google ScholarGoogle Scholar
  66. HEEL, J. 1990 Direct estimation of structure and motion f~:om multiple frames. Tech Rep. 1190, MIT AI Meno, MIT, Cambridge, MA Google ScholarGoogle Scholar
  67. HILDRETH, E C 1984 The computatmn of the velomty field. Prec. Royal SoczeO' of London, B 221, 189 220.Google ScholarGoogle Scholar
  68. HORN, B. K P 1987 Motion fields are hardly ever ambiguous Int. J. Comput V~smn J, 259-274.Google ScholarGoogle Scholar
  69. HORN, B K. P. AND SCt~UNCK, B. G 1981. Determining optmal flow Artzf. Intell. 17, 185-204Google ScholarGoogle Scholar
  70. HORN, B. K. P. ANn WELDON, E.J. 1987. Computat(anally efficient methods for recovering translational motion. In Proceedings of ICCV (London, ,June), 2 11Google ScholarGoogle Scholar
  71. IRANL M, Rousso, B, AND PELEG, S. 1994. Computing occluding and transparent matrons Int J Comput Vzszon 12, 1, 5-16 Google ScholarGoogle Scholar
  72. IRANI, M., Rousso, B, AND PELEG, S. 1994. Recovery of egomotion using image stabilization. In CVPR (Seattle, WA, June), 454 460.Google ScholarGoogle Scholar
  73. JAHNE, B. 1990. Motion determinatmn in spacetime images. In Proceedings ofECCV (Antibes, France, June), 161 173 Google ScholarGoogle Scholar
  74. JAIN, R. C 1984 Segmentatmn of frame sequences obtained by a moving observer IEEE PAMI 6, 5, 624 629.Google ScholarGoogle Scholar
  75. JAIN, R.C. 1983. Direct computation of the focus of expansion IEEE PAMI 5, 1, 58-63.Google ScholarGoogle Scholar
  76. JENKIN, M. R M, JEPSON, A. D, AND TSeTSeS, J K. 1991. Techniques for disparity measurement CVGIP 53, 1, 14-30. Google ScholarGoogle Scholar
  77. JEPSON, A. D. AND BLACK, M. 1993. Mixture models for optical flow computation. In IEEE Proceedmgs of CVPR (New York, June), 760 761.Google ScholarGoogle Scholar
  78. KALIVAS, D S AND SAWCHUK, A.A. 1991 A reguon matching motion estimation algorithm. CVGIP, 54, 2, 275 288 Google ScholarGoogle Scholar
  79. KEARNEY, J. K., THOMPSON, W. B., .~ND BOLEY, D L. 1987 Optmal flow estmmtmn: An error analysn~ of gradient-based methods with local optimization. IEEE PAMI 9, 2, 229 244 Google ScholarGoogle Scholar
  80. KIRC~NER, H AN~ NmMANN, H. 1992 Finite element method fbr determination of optical flow. Pattern Recogn. 13, 2, 131 141 Google ScholarGoogle Scholar
  81. Kocm C., WANG, H. T., BATTm, R, MATmT~, B., AND ZIOMKOWSKI, C. 1991. An adaptive multiscale approach for estimating optical flow Computatmnal theory and physiological implementation. In IEEE Proceedings of Workshop ov Vzsua{ Motion (Princeton, NJ, Oct.), 111 122Google ScholarGoogle Scholar
  82. Koch, C, WANG. H. T., MATHER, B., HsU, A., AND SVAREZ, H. 1989. Computmg optical flow in resistive networks and m the primate wsual system. In IEEE Proceedings of Workshop on Vzsual Motion (Irwne, CA, Marcht, 62-72.Google ScholarGoogle Scholar
  83. KcRIES, R. AND ZIMMERMAN, G 1986 A versatfie method for the estimation of displacement vector fields from image sequences In IEEE Proceedzngs of Workshop on Motzon Representation and Analysis (Charleston, SC, May), 101 1(16Google ScholarGoogle Scholar
  84. LANGLEY, K., ATHERTON, T. J., ~VILSON, R. G., AND LACOIVmE, M. H.E. 1991. Vertical and homzontal disparities from phase. Image Vzswn Comput 9, 4, 296-302.Google ScholarGoogle Scholar
  85. LIN, T. AND BARriON, J. L. 1994 Image reconstruction error for optma} flow. In Vision Inter- /ace (Banff National Park, Alberta, May), 713 80.Google ScholarGoogle Scholar
  86. LIPTAY, A, BARREN, J. L, JEWETT, T., AND VAN WESENBEECK, l. 1995. Optic flow as an ultra-sensitive technique for measurmg seedling growth in long image sequences. J Am Sac. Hart. Scl. 120, 3, 379-385Google ScholarGoogle Scholar
  87. LITTLE, J J. 1992. Accurate early detection of dmcontinmtms. In Vision Interface (Vancouver, B.C, Dec k 2-7Google ScholarGoogle Scholar
  88. LITTLE, J J, BUTLHOFF, H H, AND PoC;GrO, T. 1988 Parallel optical flow using local voting In Proceedings of ICCV (Tampa, FL, Dec.), 454-459.Google ScholarGoogle Scholar
  89. Lru, H., HERMAN, M , HANG, T.-H., AND CHELLAPPA, R. 1993. A reliable optmal flow algorithm using 3-d Hermite polynommls. Tech. Rep. NIST-IR-5333, National Institute of Standards and Technolog%Google ScholarGoogle Scholar
  90. LONGUET-HIGGINS, H. C 1984 The visual ambigmty oi a mowng plane Proc Royal Soczet, y of London, B 223, 165 174.Google ScholarGoogle Scholar
  91. LONGUET-HIG~;INS, H C 1981 A computer algorithm for reconstructing a scene from two projections Nature, 223, 133 135Google ScholarGoogle Scholar
  92. LONC, UET-HIOGINS, H. C. AND PRAZDNY, K. 1980. The interpretation of a moving retinal nnage. Prec. Royal Socze(~ of London, B 208,385-397.Google ScholarGoogle Scholar
  93. Lucns, B. D 1984 Generalized ~mage matching by the method of differences. Carnegie-Mellon Umv, Ph.D. Thesis. Google ScholarGoogle Scholar
  94. LUCAS, B. D. AND KANADE, T. 1981. An iterative image-regSstration technique with an application to stereo vision. In Proceedings of IJCAI (Vancouver, B.C., Aug ), 674-679Google ScholarGoogle Scholar
  95. LUETTGEN, M. R., KARL, W. C., AND WILLSKY, A. S. 1994. Efficient multiscale reg~llarization with applications to the computation of optical flow. IEEE Trans. Image Process. 3, 1 (Jan.), 41-64.Google ScholarGoogle Scholar
  96. MARKANDEY, V AND FLINCHBAUGH, B. E. 1990. Multispectral constraints for optical flow computation. In Procee&ngs of ICCV (Osaka, Japan, Dec.), 38-41.Google ScholarGoogle Scholar
  97. MARR, D. AND HILDRETH, E. C. 1980. Theory of edge detection. Proc. Royal Society Londolz, B 290, 187 212.Google ScholarGoogle Scholar
  98. DE MICHELI, E., TORRE, V., AND URAS, S. 1993. The accuracy of the computation of optical flow and of the recovery of motion parameters. IEEE PAMI 15, 5, 434-447. Google ScholarGoogle Scholar
  99. MITICHE, A., WAN,, Y. F., AND AGGARWAL, J. K. 1987. Experiments in computing optical flow with the gradient-based, multiconstraint method. Pattern Recogn. 20, 2, 173 179. Google ScholarGoogle Scholar
  100. MOUNTS, F. W. 1969. A video encoding system using conditional picture-element replenishment. Bell Syst. Tech. J. 48, 2545-2554.Google ScholarGoogle Scholar
  101. MUKAWA, N. 1990. Estimation of shape, reflection coefficients and illuminant direction from image sequences. In Proceedzngs of ICCV (Osaka, Japan, Dec.), 507-512.Google ScholarGoogle Scholar
  102. MURRAY, D. W. AND BUXTON, B. F. 1987. Scene segmentation from visual motion using global optimization. IEEE PAMI 9, 2, 220-228. Google ScholarGoogle Scholar
  103. MURRAY, U. W. AND BUXTON, B.F. 1984. Reconstructing the optic flow from edge motion: An examinatloh of two different approaches. First IEEE Conference on AI Apphcations (Denver, CO, 1984), 382 388.Google ScholarGoogle Scholar
  104. MUSMANN, H. G., PIRSCH, P., AND GRALLERT, H. J. 1985 Advances in picture coding. Proc. IEEE, 73, 4, 523-548.Google ScholarGoogle Scholar
  105. NAGEL, H.-H. 1990. Extending the 'oriented smoothness constraint' into the temporal domain and the estimation of derivatives of optic flow. In Proceedings ofECCV (Antibes, France, April), 139-148. Google ScholarGoogle Scholar
  106. NAGEL, H.-H. 1989. On a constraint equation for the estimation of displacement rates in image sequences. IEEE PAMI 11, 1, 13-30. Google ScholarGoogle Scholar
  107. NAGEL, H.-H. 1987. On the estimation of optical flow: Relations between different approaches and some new results. Artif. Intell. 33, 299-324. Google ScholarGoogle Scholar
  108. NAGEL, H.-H. 1983a. Constraints for the estimation of vector fields from image sequences. In Proceedzngs IJCAI, (Karlsruhe, Germany, Aug.). 945-951.Google ScholarGoogle Scholar
  109. NAaEL, H.-H. 1983b. Displacement vectors derived from second-order intensity variations in image sequences. CVGIP, 21, 85-117.Google ScholarGoogle Scholar
  110. NAGEL, H.-H. AND ENKELMANN, W. 1986. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE PAMI 8, 5, 565-593. Google ScholarGoogle Scholar
  111. NEGAHDARIPOUR, S. AND HORN, B. K.P. 1987. Direct passive navigation. IEEE PAMI 9, l, 168-176. Google ScholarGoogle Scholar
  112. NEGAHDARIPOUR, S. AND LEE, S. 1992. Motion recovery from image sequences using only first order optical flow information. Int. J. Comput. Vision 9, 3, 163-184. Google ScholarGoogle Scholar
  113. NEGAHDARIPOUR, S. AND YU, C.H. 1993. A generalized brightness change model for computing optical flow. In Proceedings ICCV (Berlin, May), 2-11.Google ScholarGoogle Scholar
  114. NETRAVALI, A. N AND ROBBINS, J.D. 1979. Motion compensated television coding: Part 1. Bell Syst. Tech. J 58, 631 670.Google ScholarGoogle Scholar
  115. OGATA, M. AND SATO, T. 1992. Motmn-detection model with two stages: Spatiotemporal filtering and feature matching. J. Opt. Soc. Am. A 9, 3, 377 387.Google ScholarGoogle Scholar
  116. OKUTOMI, M. AND KANADE, T 1990. A locally adaptive window for signal matching'. In ProeeedD~gs of ICCV (Osaka, Japan, Dec.), 190 199Google ScholarGoogle Scholar
  117. OVERiNGTON, I 1987 Gradient-based flow segmentation and location of the focus of expansion. In Alvey V~sion Conference (Cambridge Univ., Sept.), 860-870.Google ScholarGoogle Scholar
  118. PERRONE, J.A. 1990. Simple techmque for optical flow estimation. J. Opt. Soe. Am. A 7 2, 264 277.Google ScholarGoogle Scholar
  119. POGGIO, T., GAMBLE, E., AND LITTLE, J. 1988. Parallel integration of vision modules. Science 242, 436-440.Google ScholarGoogle Scholar
  120. PRAZDN~, K. 1985. Detection of binocular disparities. Biol. Cyber,. 52, 93 99Google ScholarGoogle Scholar
  121. PP~ZDNY, K. 1979. Motion and structure from optical flow. In Proceedings of IJCAI (Tokyo, Aug.), 702-704.Google ScholarGoogle Scholar
  122. PRINCE, J. L. AND MCVEIGH, E.R. 1992. Motion estimation from tagged mr image sequences. IEEE Trans. Medical Images 11, 2,238 249Google ScholarGoogle Scholar
  123. REGAN, D. AND BEVERLEY, K.I. 1982. How do we avoid confounding the direction we are looking and the direction we are moving. Science 215, 194 196.Google ScholarGoogle Scholar
  124. REICHARDT, W., SCHLOGL, R. W., AND EGELHOAF, M. 1988. Movement detectors of the correlation type provide sufficient information for local computation of 2d velocity fields. Naturwissenschaften 75, 313-315.Google ScholarGoogle Scholar
  125. RO~NONE, A., CAMPANI, M., AND VERm, A. 1992. Identifying multiple motions from optical flow. In Proceedings of ECCV (Santa Margherita Ligure, Italy, May), 258 266. Google ScholarGoogle Scholar
  126. SCHNORR, C. 1992. Computatmn of discontinuous optical flow by domain decomposition. IEEE PAMI 8, 2, 153-165. Google ScholarGoogle Scholar
  127. SCHNORR, C. 1991 Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class Int. d Conzput. Vision 6, 1, 25 38. Google ScholarGoogle Scholar
  128. SCHUNCK, B. G 1989 Image flow segmentation and estimation by constraint line clustermg. IEEE PAMI 11, 10, 1010 1027 Google ScholarGoogle Scholar
  129. SCHUNOK, B.G. 1985. Image flow Fundamentals and future research. In IEEE Proceedings of CVPR, (San Francmco, June), 560 571Google ScholarGoogle Scholar
  130. SCOTT, G. L. 1987. Four-line method of locally estimating optic flow Image Vzsmn Comput. 5, 2, 67-72 Google ScholarGoogle Scholar
  131. SHfZAWA, M. AND MASE, K 1991 Principle of superposltion: A common computational framework for analysis of multiple motion In IEEE Proceedmgs of Workshop on Visual Motion IPrinceton, NJ., Oct.), 164 172.Google ScholarGoogle Scholar
  132. SiMONCELLI, E P., ADELSON, E. H., AND HEEGER, D. J 1991 Probability distributions of optical flow. In IEEE Proceedings of CVPR (Los Alamitos, CA, June), 310 315Google ScholarGoogle Scholar
  133. SINGII, A. 1992. Optm flow computation. A urnfled perspectme IEEE Computer Society Press, Los Alamitos, CA.Google ScholarGoogle Scholar
  134. SIN~;H, A. 1991 Incremental estimation of image flow using a Kalman filter In IEEE Proceedrags of Workshop on Visual Motion iPrinceton, NJ, Oct.), 36 43.Google ScholarGoogle Scholar
  135. SINGH, A. 1990. An estimation-theoretic fkamework Ibr image flow computation. In Proceedrags oflCCV (Osaka, Dec.), 168-177.Google ScholarGoogle Scholar
  136. SOBEY, P AND SmNIVASAN, M.V. 1991. Measurement of optical flow by a generalized gradient scheme. J Opt. Soc. Am. A 8, 9, 1488-1498Google ScholarGoogle Scholar
  137. SPACEK, L.A. 1986 Edge detection and motion detection, image Vlsmn Comput. 4, 1, 43-56. Google ScholarGoogle Scholar
  138. SPETSAKIS, M. E. 1994. An optical flow estimation algorithm that uses Gabor filters and affine model for flow. Tech. Rep., Dept of Computer Science, York University.Google ScholarGoogle Scholar
  139. SRINIVASAN, M. V. 1990. Generalized gra&ent schemes for the measurement of two-dimensional image motion. B~ol. Cybern. 6'3,421 431. Google ScholarGoogle Scholar
  140. SUBBARAO~ M. 1990. Bounds on time-to-collision and rotational component from first-order derivatives of image flow CVGIP 50, 329-341 Google ScholarGoogle Scholar
  141. SUBBARAO, M. AND WAXMAN, A.M. 1985 On the umqueness of image flow solutions for planar surfaces in motion. In Third Workshop on Computer Vision: Representation and Control (Bellaire, MI, Oct ), 129-140.Google ScholarGoogle Scholar
  142. SUNDaRESWARaN, V. 1992. A fast method to estimate sensor translation. In Proceedmgs of ECCV (Santa Margherita Ligura, Italy, May), 257 263. Google ScholarGoogle Scholar
  143. SUTTON, M. A, WALTERS, W. J., PETERS, W H., RANSON, W F., AND McNEIL, S R. 1983. Determination of disp}acement using an improved digital correlatmn method. Image Vzsmn Cornput 1, 3, 133-139.Google ScholarGoogle Scholar
  144. TaOMPSON, W B, MUTCH, K M., .~ND BERZINS, V. A. 1985 Dynaniic occlusion analysis in optical flow fields IEEE PAMI 7, 4, 374 383.Google ScholarGoogle Scholar
  145. THOMPSON, W B AND PONG, T. 1990. Detecting moving objects Int d. Comput. Vision 4, 1, 39 57. Google ScholarGoogle Scholar
  146. TISTARELLL M. AND SANDINI, G. 1990. Estimatmn of' depth i~om motmn using anthropomorphic visual sensor. Image Vzsmn Comput 8, 271 278. Google ScholarGoogle Scholar
  147. TRETIAK, O. AND PASTOR, L 1984. Velocity estimatron from image sequences with second-order differential operators. In IEEE Proceedings of ICPR IMontreal, Quebec, July Oct.). 20-22.Google ScholarGoogle Scholar
  148. Ts^i, R. Y. m'4a HUANG, T. S. 1984. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE PAMI 6, 1, 13 27.Google ScholarGoogle Scholar
  149. TSAI, R. Y., HUANG, T. S., aND ZHU, W 1982. Eshmating three-dimensional motion parameters of a rigid planar patch 2. Singular value decomposition. IEEE Trans. Acoustics, Speech Signal Process 30, 4, 525-534.Google ScholarGoogle Scholar
  150. ULLMAN, S. 1979. The Interpretatmn of Visual Motion MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  151. URAS, S, Gmosh F, VERRh A., AND TORRE, V 1988 A computational approach to motion perception Biol Cybern 60, 79 87.Google ScholarGoogle Scholar
  152. WANG, J. Y. A AND ADELSON, E H. 1994. Representing moving images with layers IEEE Trans. Image Process 3, 5, 625-638.Google ScholarGoogle Scholar
  153. WATSON, A B ANn AHUMADA, A. J JR. 1985 Model of human visual motion sensing- J. Opt Soc. Am. A 2, 2, 322-341.Google ScholarGoogle Scholar
  154. WAXMAN, A. M. AND WOHN, a. 1985 Contour evolution, nmghborhood deformation, and global image flow: planar surfaces in motion Int. J. Robotms Res. 4, 3, 95-108.Google ScholarGoogle Scholar
  155. WAXMAN, A M., Wu, J, ANn BERGHOLM, F. 1988 Convected activation profiles and the measurement of visual motmn. In IEEE Proceedings of CVPR (Ann Arbor, MI, June), 717 723.Google ScholarGoogle Scholar
  156. WEBER, J. AND MALIK, J. 1993. Robust computation of optical flow m a multi-scale differentml framework In Proceedmgs of ICCV (Berlin, May), 12-20.Google ScholarGoogle Scholar
  157. WENG, J 1990 A theory of image matching. In Proceedings of ICCV (Osaka, Dec.), 200-209.Google ScholarGoogle Scholar
  158. WmTTEN, G 1990. A framework for adaptive scale space tracking solutions to prob}ems in computer vision. In Proceedings of ICCV /Osaka, Dec.), 210-220Google ScholarGoogle Scholar
  159. WILLICK, D. AND YANG, Y. 1989. Experimental evaluation of motion constraint equatmns. Tech. Rep. 89-4, Dept. of Computational Science, Univ. of Saskatchewan.Google ScholarGoogle Scholar
  160. WoomtmxL R.J. 1990. Multiple light source optical flow. In Proceedings oflCCV (Osaka, Dec.), 42 46.Google ScholarGoogle Scholar
  161. X~ON% Y. AND SHAFER, S.A. 1994. Moment and hypergeometric filters for high precision computation of focus, stereo and optical flow. Tech. Rep CMU-RI-TR-94-28. Dept. of Computer Science, Carnegie-Mellon Univ.Google ScholarGoogle Scholar
  162. ZHANG, Z. AND FAUGERAS~ O.D. 1992. Three-dimensional motion computation and object segmentation in a long sequence in stereo frames. Int. d. Comput. Vzslon 7, 3. Google ScholarGoogle Scholar
  163. ZHENC~, H. AND BLOSTEIN, S.D. 1993. An errorweighted regularization algorithm for image motion-field estimation. IEEE Trans. Image Process. 2, 2, 246 252.Google ScholarGoogle Scholar
  164. ZHENG, Q. AND CHELLAPPA, R. 1993. Automatm feature point extraction and tracking in image sequences for unknown image motion. In Proceedmgs oflCCV (Berlin, May), 335-339.Google ScholarGoogle Scholar
  165. ZINNER, H. 1986. Determining the kinematic parameters of a moving imaging sensor by processing spatial and temporal intensity changes. J. Opt. Soc. Am. A 3, 9, 1512-1517.Google ScholarGoogle Scholar
  166. ZOLTOWSKt, M.D. 1987 Signal processing applications of the method of total least squares. In IEEE 21st Annual Aszlomar Conference on Signals, Systems, and Computers (Pacific Grove, CA, Nov.), 290 296.Google ScholarGoogle Scholar

Index Terms

  1. The computation of optical flow

                      Recommendations

                      Comments

                      Login options

                      Check if you have access through your login credentials or your institution to get full access on this article.

                      Sign in

                      Full Access

                      • Published in

                        cover image ACM Computing Surveys
                        ACM Computing Surveys  Volume 27, Issue 3
                        Sept. 1995
                        166 pages
                        ISSN:0360-0300
                        EISSN:1557-7341
                        DOI:10.1145/212094
                        Issue’s Table of Contents

                        Copyright © 1995 ACM

                        Publisher

                        Association for Computing Machinery

                        New York, NY, United States

                        Publication History

                        • Published: 1 September 1995
                        Published in csur Volume 27, Issue 3

                        Permissions

                        Request permissions about this article.

                        Request Permissions

                        Check for updates

                        Qualifiers

                        • article

                      PDF Format

                      View or Download as a PDF file.

                      PDF

                      eReader

                      View online with eReader.

                      eReader