skip to main content
research-article

Elimination graphs

Published:25 April 2012Publication History
Skip Abstract Section

Abstract

In this article we study graphs with inductive neighborhood properties. Let P be a graph property, a graph G = (V, E) with n vertices is said to have an inductive neighborhood property with respect to P if there is an ordering of vertices v1, …, vn such that the property P holds on the induced subgraph G[N(vi)∩ Vi], where N(vi) is the neighborhood of vi and Vi = {vi, …, vn}. It turns out that if we take P as a graph with maximum independent set size no greater than k, then this definition gives a natural generalization of both chordal graphs and (k + 1)-claw-free graphs. We refer to such graphs as inductive k-independent graphs. We study properties of such families of graphs, and we show that several natural classes of graphs are inductive k-independent for small k. In particular, any intersection graph of translates of a convex object in a two dimensional plane is an inductive 3-independent graph; furthermore, any planar graph is an inductive 3-independent graph. For any fixed constant k, we develop simple, polynomial time approximation algorithms for inductive k-independent graphs with respect to several well-studied NP-complete problems. Our generalized formulation unifies and extends several previously known results.

References

  1. Addario-Berry, L., Kennedy, W., King, A. D., Li, Z., and Reed, B. 2010. Finding a maximum-weight induced k-partite subgraph of an i-triangulated graph. Discrete Appl. Math. 158, 7, 765--770. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Akcoglu, K., Aspnes, J., DasGupta, B., and Kao, M.-Y. 2002. Opportunity-cost algorithms for combinatorial auctions. In Applied Optimization 74: Computational Methods in Decision-Making, Economics and Finance, E. J. Kontoghiorghes, B. Rustem, and S. Siokos, Eds., Kluwer Academic Publishers, 455--479.Google ScholarGoogle Scholar
  3. Alon, N., Feige, U., Wigderson, A., and Zuckerman, D. 1995. Derandomized graph products. Comput. Complexity 5, 60--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baker, B. S. 1994. Approximation algorithms for np-complete problems on planar graphs. J. ACM 41, 153--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bar-Noy, A., Bar-Yehuda, R., Freund, A., (Seffi) Naor, J., and Schieber, B. 2001. A unified approach to approximating resource allocation and scheduling. J. ACM 48, 1069--1090. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bar-Noy, A. and Guha, S. 2002a. Approximating the throughput of multiple machines in real-time scheduling. SIAM J. Comput. 31, 331--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bar-Noy, A. and Guha, S. 2002b. Approximating the throughput of multiple machines in real-time scheduling. SIAM J. Comput. 31, 331--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bar-Yehuda, R. and Even, S. 1982. On approximating a vertex cover for planar graphs. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC). 303--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bar-Yehuda, R. and Even, S. 1985. A local-ratio theorem for approximating the weighted vertex cover problem. In Analysis and Design of Algorithms for Combinatorial Problems, G. Ausiello and M. Lucertini, Eds., North-Holland Mathematics Studies Series, vol. 109, North-Holland, 27--45.Google ScholarGoogle Scholar
  10. Berman, P. 2000. A d/2 approximation for maximum weight independent set in d-claw free graphs. Nordic J. Comput. 7, 178--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Berman, P. and DasGupta, B. 2000. Improvements in throughout maximization for real-time scheduling. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC). 680--687. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Berman, P. and DasGupta, B. 2002. A simple approximation algorithm for nonoverlapping local alignments (weighted independent sets of axis parallel rectangles). Biocomput. 1, 129--138.Google ScholarGoogle ScholarCross RefCross Ref
  13. Berman, P., DasGupta, B., and Muthukrishnan, S. 2002. Simple approximation algorithm for nonoverlapping local alignments. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 677--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Borodin, A., Cashman, D., and Magen, A. 2005. How well can primal-dual and local-ratio algorithms perform? In Automata, Languages and Programming, L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, Eds., Lecture Notes in Computer Science, vol. 3580, Springer Berlin, 943--955. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Borodin, A., Nielsen, M. N., and Rackoff, C. 2002. (incremental) priority algorithms. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 752--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chakaravarthy, V. T. and Roy, S. 2009. Approximating maximum weight k-colorable subgraphs in chordal graphs. Inform. Proc. Lett. 109, 7, 365--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chuzhoy, J., Ostrovsky, R., and Rabani, Y. 2006. Approximation algorithms for the job interval selection problem and related scheduling problems. Math. Oper. Res. 31, 730--738. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Corneil, D. G., Olariu, S., and Stewart, L. 1997. Asteroidal triple-free graphs. SIAM J. Discret. Math. 10, 399--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. De Figueiredo, C. M. H. and Maffray, F. 2004. Optimizing bull-free perfect graphs. SIAM J. Discrete Math. 18, 2, 226--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Downey, R. G. and Fellows, M. R. 1995. Fixed-parameter tractability and completeness II: On completeness for w{1}. Theoret. Comput. Sci. 141, 1-2, 109--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Edmonds, J. 1965. Paths, trees, and flowers. Canad. J. Math. 17, 449--467.Google ScholarGoogle ScholarCross RefCross Ref
  22. Edmonds, J. 1971. Matroids and the greedy algorithm. Math. Program. 1, 127--136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Eisenbrand, F. and Grandoni, F. 2004. On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci. 326, 57--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Erlebach, T., Jansen, K., and Seidel, E. 2005. Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34, 1302--1323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Feige, U. and Kilian, J. 1996. Zero knowledge and the chromatic number. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity. 278--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Gavril, F. 1972. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 180--187.Google ScholarGoogle Scholar
  27. Grötschel, M., Lovász, L., and Schrijver, A. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169--197.Google ScholarGoogle ScholarCross RefCross Ref
  28. Halldórsson, M. 1999. Approximations of weighted independent set and hereditary subset problems. In Computing and Combinatorics, T. Asano, H. Imai, D. Lee, S.-i. Nakano, and T. Tokuyama, Eds., Lecture Notes in Computer Science, vol. 1627, Springer Berlin, 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hochbaum, D. S. 1983. Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Appl. Math. 6, 3, 243--254.Google ScholarGoogle ScholarCross RefCross Ref
  30. Itai, A. and Rodeh, M. 1977. Finding a minimum circuit in a graph. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing (STOC). 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jamison, R. E. and Mulder, H. M. 2000. Tolerance intersection graphs on binary trees with constant tolerance 3. Discrete Math. 215, 1-3, 115--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jensen, T. R. and Toft, B. 1995. Graph Coloring Problems. Wiley-Interscience, New York.Google ScholarGoogle Scholar
  33. Kako, A., Ono, T., Hirata, T., and Halldórsson, M. M. 2009. Approximation algorithms for the weighted independent set problem in sparse graphs. Discrete Appl. Math. 157, 617--626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kammer, F., Tholey, T., and Voepel, H. 2009. Approximation algorithms for intersection graphs. Tech. rep., Institut für Informatik, Universitat Augsburg.Google ScholarGoogle Scholar
  35. Khot, S. and Regev, O. 2003. Vertex cover might be hard to approximate to within 2-epsilon. In Proceedings of the 18th Annual IEEE Conference on Computational Complexity. 379--386.Google ScholarGoogle Scholar
  36. Kim, S. J., Kostochka, A., and Nakprasit, K. 2004. On the chromatic number of intersection graphs of convex sets in the plane. Electron. J. Combinat. 11, 52.Google ScholarGoogle ScholarCross RefCross Ref
  37. Korte, B. and Lovász, L. 1981. Mathematical structures underlying greedy algorithms. In Proceedings of the International FCT-Conference on Fundamentals of Computation Theory (FCT). 205--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Lekkerkerker, C. G. and Boland, J. C. 1962. Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45--64.Google ScholarGoogle ScholarCross RefCross Ref
  39. Marathe, M., Breu, H., I, I I, H. B. H., Ravi, S. S., and Rosenkrantz, D. J. 1995. Simple heuristics for unit disk graphs. Netw. 25, 59--68.Google ScholarGoogle ScholarCross RefCross Ref
  40. Minty, G. J. 1980. On maximal independent sets of vertices in claw-free graphs. J. Combinat. Theory, Series B 28, 3, 284--304.Google ScholarGoogle ScholarCross RefCross Ref
  41. Nagashima, H. and Yamazaki, K. 2004. Hardness of approximation for non-overlapping local alignments. Discrete Appl. Math. 137, 293--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Nakamura, D. and Tamura, A. 2001. A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph. J. Oper. Res. Soc. Japan 44, 2, 194--204.Google ScholarGoogle ScholarCross RefCross Ref
  43. Nemhauser, G. L. and Trotter, L. E. 1975. Vertex packings: Structural properties and algorithms. Math. Prog. 8, 232--248.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Nieberg, T., Hurink, J., and Kern, W. 2004. A robust PTAS for maximum weight independent sets in unit disk graphs. In Proceedings of the 30th International Workshop on Graph-Theoretic Concepts in Computer Science. 214--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Spieksma, F. C. R. 1999. On the approximability of an interval scheduling problem. J. Sched. 2, 215--227.Google ScholarGoogle ScholarCross RefCross Ref
  46. Yannakakis, M. and Gavril, F. 1987. The maximum k-colorable subgraph problem for chordal graphs. Inform. Proc. Lett. 24, 2, 133--137. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Elimination graphs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Algorithms
        ACM Transactions on Algorithms  Volume 8, Issue 2
        April 2012
        236 pages
        ISSN:1549-6325
        EISSN:1549-6333
        DOI:10.1145/2151171
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 April 2012
        • Accepted: 1 September 2010
        • Revised: 1 May 2010
        • Received: 1 October 2009
        Published in talg Volume 8, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader