skip to main content
research-article

Adaptive manifolds for real-time high-dimensional filtering

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a technique for performing high-dimensional filtering of images and videos in real time. Our approach produces high-quality results and accelerates filtering by computing the filter's response at a reduced set of sampling points, and using these for interpolation at all N input pixels. We show that for a proper choice of these sampling points, the total cost of the filtering operation is linear both in N and in the dimension d of the space in which the filter operates. As such, ours is the first high-dimensional filter with such a complexity. We present formal derivations for the equations that define our filter, as well as for an algorithm to compute the sampling points. This provides a sound theoretical justification for our method and for its properties. The resulting filter is quite flexible, being capable of producing responses that approximate either standard Gaussian, bilateral, or non-local-means filters. Such flexibility also allows us to demonstrate the first hybrid Euclidean-geodesic filter that runs in a single pass. Our filter is faster and requires less memory than previous approaches, being able to process a 10-Megapixel full-color image at 50 fps on modern GPUs. We illustrate the effectiveness of our approach by performing a variety of tasks ranging from edge-aware color filtering in 5-D, noise reduction (using up to 147 dimensions), single-pass hybrid Euclidean-geodesic filtering, and detail enhancement, among others.

Skip Supplemental Material Section

Supplemental Material

References

  1. Adams, A., Gelfand, N., Dolson, J., and Levoy, M. 2009. Gaussian kd-trees for fast high-dimensional filtering. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adams, A., Baek, J., and Davis, M. A. 2010. Fast high-dimensional filtering using the permutohedral lattice. CGF 29, 2, 753--762.Google ScholarGoogle ScholarCross RefCross Ref
  3. Adams, A. B. 2011. High-dimensional gaussian filtering for computational photography. PhD thesis, Stanford University.Google ScholarGoogle Scholar
  4. Arasaratnam, I., Haykin, S., and Elliott, R. 2007. Discrete-time nonlinear filtering algorithms using gauss--hermite quadrature. Proc. of the IEEE 95, 5, 953--977.Google ScholarGoogle ScholarCross RefCross Ref
  5. Aurich, V., and Weule, J. 1995. Non-linear gaussian filters performing edge preserving diffusion. In Mustererkennung 1995, 17. DAGM-Symposium, 538--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bae, S., Paris, S., and Durand, F. 2006. Two-scale tone management for photographic look. ACM TOG 25, 3, 637--645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barash, D. 2002. A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE TPAMI 24, 844--847. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bauszat, P., Eisemann, M., and Magnor, M. 2011. Guided image filtering for interactive high-quality global illumination. Computer Graphics Forum 30, 4, 1361--1368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bennett, E. P., and McMillan, L. 2005. Video enhancement using per-pixel virtual exposures. ACM TOG 24, 845--852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bhavsar, A. V., and Rajagopalan, A. N. 2010. Depth estimation and inpainting with an unconstrained camera. In Proceedings of the British Machine Vision Conference, 84.1--12.Google ScholarGoogle Scholar
  11. Buades, A., Coll, B., and Morel, J. 2005. A non-local algorithm for image denoising. In IEEE CVPR, vol. 2, 60--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, J., Paris, S., and Durand, F. 2007. Real-time edge-aware image processing with the bilateral grid. ACM TOG 26, 3, 103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Criminisi, A., Sharp, T., Rother, C., and P'erez, P. 2010. Geodesic image and video editing. ACM TOG 29, 5, 134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE TIP 16, 8, 2080--2095. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Deriche, R., 1993. Recursively implementating the gaussian and its derivatives.Google ScholarGoogle Scholar
  16. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. In SIGGRAPH '02, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Eisemann, E., and Durand, F. 2004. Flash photography enhancement via intrinsic relighting. In ACM TOG, vol. 23, ACM, 673--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM TOG 27, 3, 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fattal, R., Agrawala, M., and Rusinkiewicz, S. 2007. Multiscale shape and detail enhancement from multi-light image collections. ACM TOG 26, 51:1--51:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Fattal, R. 2009. Edge-avoiding wavelets and their applications. ACM TOG 28, 3, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gastal, E. S. L., and Oliveira, M. M. 2010. Shared sampling for real-time alpha matting. CGF 29, 2, 575--584.Google ScholarGoogle ScholarCross RefCross Ref
  22. Gastal, E. S. L., and Oliveira, M. M. 2011. Domain transform for edge-aware image and video processing. ACM TOG 30, 4, 69:1--69:12. Proceedings of SIGGRAPH 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. He, K., Sun, J., and Tang, X. 2010. Guided image filtering. In ECCV. Springer Berlin/Heidelberg, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. He, K., Rhemann, C., Rother, C., Tang, X., and Sun, J. 2011. A global sampling method for alpha matting. In CVPR, IEEE, 2049--2056. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Heckbert, P. S. 1986. Filtering by repeated integration. SIGGRAPH Comput. Graph. 20, 4, 315--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Knutsson, H., and Westin, C.-F. 1993. Normalized and differential convolution: Methods for interpolation and filtering of incomplete and uncertain data. In CVPR, 515--523.Google ScholarGoogle Scholar
  27. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM TOG 26, 96:1--96:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM TOG 23, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM TOG 25, 3, 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nehab, D., Maximo, A., Lima, R. S., and Hoppe, H. 2011. Gpu-efficient recursive filtering and summed-area tables. ACM TOG 30, 176:1--176:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. NIST, 2011. National Institute of Standards and Technology: Digital library of mathematical functions, August.Google ScholarGoogle Scholar
  32. Paris, S., and Durand, F. 2009. A fast approximation of the bilateral filter using a signal processing approach. IJCV 81, 1, 24--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. ACM TOG 23, 3, 664--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pham, T., and van Vliet, L. 2005. Separable bilateral filtering for fast video preprocessing. IEEE Intl. Conf. on Multimedia and Expo 0, 4 pp.Google ScholarGoogle ScholarCross RefCross Ref
  35. Porikli, F. 2008. Constant time O(1) bilateral filtering. In CVPR, 1--8.Google ScholarGoogle Scholar
  36. Richardt, C., Orr, D., Davies, I., Criminisi, A., and Dodgson, N. 2010. Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid. In ECCV. Springer Berlin/Heidelberg, 510--523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Smith, S. M., and Brady, J. M. 1997. Susan -- a new approach to low level image processing. International journal of computer vision 23, 1, 45--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sochen, N., Kimmel, R., and Bruckstein, A. 2001. Diffusions and confusions in signal and image processing. Journal of Mathematical Imaging and Vision 14, 3, 195--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tasdizen, T. 2008. Principal components for non-local means image denoising. In ICIP, IEEE, 1728--1731.Google ScholarGoogle Scholar
  40. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Weber, M., Milch, M., Myszkowski, K., Dmitriev, K., Rokita, P., and Seidel, H. 2004. Spatio-temporal photon density estimation using bilateral filtering. In CGI, IEEE, 120--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Winnemöller, H., Olsen, S. C., and Gooch, B. 2006. Real-time video abstraction. ACM TOG 25, 3, 1226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yang, C., Duraiswami, R., Gumerov, N., and Davis, L. 2003. Improved fast gauss transform and efficient kernel density estimation. In ICCV, IEEE, 664--671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yang, Q., Tan, K. H., and Ahuja, N. 2009. Real-time O(1) bilateral filtering. In CVPR, 557--564.Google ScholarGoogle Scholar
  45. Yang, L., Sander, P. V., Lawrence, J., and Hoppe, H. 2011. Antialiasing recovery. ACM TOG 30, 22:1--22:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zhuo, S., Zhang, X., Miao, X., and Sim, T. 2010. Enhancing low light images using near infrared flash images. In IEEE ICIP, IEEE, 2537--2540.Google ScholarGoogle Scholar

Index Terms

  1. Adaptive manifolds for real-time high-dimensional filtering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader