skip to main content
10.1145/2348543.2348578acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Locating in fingerprint space: wireless indoor localization with little human intervention

Published:22 August 2012Publication History

ABSTRACT

Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the past decades. Most radio-based solutions require a process of site survey, in which radio signatures of an interested area are annotated with their real recorded locations. Site survey involves intensive costs on manpower and time, limiting the applicable buildings of wireless localization worldwide. In this study, we investigate novel sensors integrated in modern mobile phones and leverage user motions to construct the radio map of a floor plan, which is previously obtained only by site survey. On this basis, we design LiFS, an indoor localization system based on off-the-shelf WiFi infrastructure and mobile phones. LiFS is deployed in an office building covering over 1600m2, and its deployment is easy and rapid since little human intervention is needed. In LiFS, the calibration of fingerprints is crowdsourced and automatic. Experiment results show that LiFS achieves comparable location accuracy to previous approaches even without site survey.

References

  1. M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: mobile phone localization via ambience fingerprinting. In Proceedings of ACM MobiCom, pages 261--272, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Bahl and V. N. Padmanabhan. RADAR: an in-building RF-based user location and tracking system. In Proceedings of IEEE INFOCOM, volume 2, pages 775--784, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Bjorck. Numerical methods for least squares problems. Number 51. Society for Industrial Mathematics, 1996.Google ScholarGoogle Scholar
  4. I. Borg and P. Groenen. Modern multidimensional scaling: Theory and applications. Springer Verlag, 2005.Google ScholarGoogle Scholar
  5. Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha. Fm-based indoor localization. In Proceedings of the ACM MobiSys 2012, MobiSys '12, pages 169--182, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor localization without the pain. In Proceedings of ACM MobiCom, pages 173--184, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Cormen. Introduction to algorithms. The MIT press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Costa, N. Patwari, and A. Hero III. Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks (TOSN), 2(1):39--64, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Ferris, D. Fox, and N. Lawrence. Wifi-slam using gaussian process latent variable models. In Proceedings of IJCAI, pages 2480--2485, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. G. Griswold, P. Shanahan, S. W. Brown, R. Boyer, M. Ratto, R. B. Shapiro, and T. M. Truong. ActiveCampus: experiments in community-oriented ubiquitous computing. Computer, 37(10):73--81, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal. Efficient, generalized indoor wifi graphslam. In IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, pages 1038--1043. IEEE, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Jimenez, F. Seco, C. Prieto, and J. Guevara. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In Intelligent Signal Processing, IEEE International Symposium on, pages 37--42, 2009.Google ScholarGoogle Scholar
  14. J. Koo and H. Cha. Autonomous construction of a WiFi access point map using multidimensional scaling. Pervasive Computing, pages 115--132, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, et al. Place lab: Device positioning using radio beacons in the wild. Pervasive Computing, pages 301--306, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Lim, L. C. Kung, J. C. Hou, and H. Luo. Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure. Wireless Networks, 16(2):405--420, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, page 14, 1967.Google ScholarGoogle Scholar
  18. D. Madigan, E. Einahrawy, R. P. Martin, W. H. Ju, P. Krishnan, and A. S. Krishnakumar. Bayesian indoor positioning systems. In Proceedings of IEEE INFOCOM, volume 2, pages 1217--1227, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A factored solution to the simultaneous localization and mapping problem. In Proceedings of AAAI, pages 593--598, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. LANDMARC: indoor location sensing using active RFID. Wireless Networks, 10(6):701--710, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings of IEEE INFOCOM, volume 3, pages 1734--1743, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  22. T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3):245--251, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Park, B. Charrow, D. Curtis, J. Battat, E. Minkov, et al. Growing an organic indoor location system. In Proceedings of ACM MobiSys, pages 271--284, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support system. In Proceedings of ACM MobiCom, pages 32-43, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Pulkkinen, T. Roos, and P. Myllymaki. Semi-supervised learning for wlan positioning. Artificial Neural Networks and Machine Learning, pages 355--362, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Rai, R. Sen, K. K. Chintalapudi, and V. Padmanabhan. Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of ACM MobiCom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka. You are facing the mona lisa: spot localization using phy layer information. In Proceedings of the ACM MobiSys 2012, MobiSys '12, pages 183--196, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Shang and W. Ruml. Improved MDS-based localization. In Proceedings of IEEE INFOCOM, volume 4, pages 2640--2651, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  29. Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from mere connectivity. In Proceedings of ACM MobiHoc, pages 201--212, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.Google ScholarGoogle Scholar
  31. D. Turner, S. Savage, and A. Snoeren. On the empirical performance of self-calibrating wifi location systems. In Local Computer Networks (LCN), 2011 IEEE 36th Conference on, pages 76--84, oct. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. Choudhury. No need to war-drive: Unsupervised indoor localization. In Proceedings of ACM MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. O. Woodman and R. Harle. Pedestrian localisation for indoor environments. In Proceedings of ACM UbiComp, pages 114--123, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. Wu, Z. Yang, Y. Liu, and W. Xi. WILL: wireless indoor localization without site survey. In INFOCOM, 2012 Proceedings IEEE, pages 64--72, Mar. 2012.Google ScholarGoogle Scholar
  35. M. Youssef and A. Agrawala. The horus WLAN location determination system. In Proceedings of ACM MobiSys, pages 205--218, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala. Pinpoint: An asynchronous time-based location determination system. In Proceedings of ACM MobiSys, pages 165--176, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Y. Zhao, and H. Zheng. I am the antenna: accurate outdoor ap location using smartphones. In Proceedings of the 17th annual international conference on Mobile computing and networking, MobiCom '11, pages 109--120, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Locating in fingerprint space: wireless indoor localization with little human intervention

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        Mobicom '12: Proceedings of the 18th annual international conference on Mobile computing and networking
        August 2012
        484 pages
        ISBN:9781450311595
        DOI:10.1145/2348543

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 August 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate440of2,972submissions,15%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader