skip to main content
research-article

Large-scale fluid simulation using velocity-vorticity domain decomposition

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods.

We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Angelidis, A., and Neyret, F. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, SCA '05, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, SCA '06, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and der Vorst, H. V. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  5. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R., and Müller-Fischer, M. 2007. Fluid simulation: Siggraph 2007 course notes. In ACM SIGGRAPH 2007 courses, ACM, SIGGRAPH '07, 1--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cantarella, J., DeTurck, D., and Gluck, H. 2002. Vector calculus and the topology of domains in 3-space. Amer. Math. Monthly 109, 5, 409--442.Google ScholarGoogle ScholarCross RefCross Ref
  8. Carlson, M. T., 2004. Rigid, melting, and flowing fluid. Ph.D. Dissertation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O'Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, SCA '07, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chorin, A. J. 1973. Numerical study of slightly viscous flow. Journal of Fluid Mechanics 57, 04, 785--796.Google ScholarGoogle ScholarCross RefCross Ref
  12. Cottet, G. H., and Koumoutsakos, P. D. 1998. Vortex Methods: Theory and Practice. Cambridge University Press.Google ScholarGoogle Scholar
  13. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26 (January). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, SIGGRAPH '01, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proceedings of ACM SIGGRAPH 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, SIGGRAPH '01, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58 (September). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2007. Advections with significantly reduced dissipation and diffusion. IEEE Transactions on Visualization and Computer Graphics 13, 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27 (August), 50:1--50:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. In Proceedings of ACM SIGGRAPH 2006, 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. In ACM SIGGRAPH 2010 papers, ACM, SIGGRAPH '10, 114:1--114:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lentine, M., Aanjaneya, M., and Fedkiw, R. 2011. Mass and momentum conservation for fluid simulation. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lindsay, K., and Krasny, R. 2001. A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172 (September), 879--907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers, ACM, SIGGRAPH '04, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14 (July), 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28 (July), 38:1--38:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, SCA '03, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27 (December), 166:1--166:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, SCA '05, 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pfaff, T., Thuerey, N., Cohen, J., Tariq, S., and Gross, M. 2010. Scalable fluid simulation using anisotropic turbulence particles. In ACM SIGGRAPH Asia 2010 papers, ACM, New York, NY, USA, SIGGRAPH ASIA '10, 174:1--174:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27 (August), 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers, ACM, SIGGRAPH '05, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable maccormack method. J. Sci. Comput. 35 (June), 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Trans. Graph. 28 (July), 40:1--40:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stam, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, SIGGRAPH '99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Toselli, A., and Widlund, O. 2004. Domain Decomposition Methods - Algorithms and Theory, vol. 34 of Springer Series in Computational Mathematics. Springer.Google ScholarGoogle Scholar
  39. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In ACM SIGGRAPH 2006 Papers, ACM, SIGGRAPH '06, 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Weissmann, S., and Pinkall, U. 2009. Real-time interactive simulation of smoke using discrete integrable vortex filaments. In Workshop in VRIPS 2009, Eurographics Association.Google ScholarGoogle Scholar
  41. Weissmann, S., and Pinkall, U. 2010. Filament-based smoke with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 papers, ACM, SIGGRAPH '10, 115:1--115:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wendt, J. D., Baxter, W., Oguz, I., and Lin, M. C. 2007. Finite volume flow simulations on arbitrary domains. Graph. Models 69 (January), 19--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. In ACM SIGGRAPH 2009 papers, ACM, SIGGRAPH '09, 39:1--39:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH '05, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Large-scale fluid simulation using velocity-vorticity domain decomposition

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 6
          November 2012
          794 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2366145
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 November 2012
          Published in tog Volume 31, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader