skip to main content
research-article

A Parallel Repetition Theorem for Constant-Round Arthur-Merlin Proofs

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

We show a parallel-repetition theorem for constant-round Arthur-Merlin Proofs, using an efficient reduction. As a consequence, we show that parallel repetition reduces the soundness-error at an optimal rate (up to a negligible factor) in constant-round public-coin argument systems, and constant-round public-coin proofs of knowledge. The first of these results resolves an open question posed by Bellare, Impagliazzo, and Naor (FOCS’97).

References

  1. Babai, L. and Moran, S. 1988. Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity class. J. Comput. Syst. Sci. 36, 2, 254--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bellare, M. and Goldreich, O. 1992. On defining proofs of knowledge. In Proceedings of CRYPTO. 390--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bellare, M., Impagliazzo, R., and Naor, M. 1997. Does parallel repetition lower the error in computationally sound protocols? In Proceedings of Foundations of Computer Science. 374--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ben-Or, M., Goldwasser, S., Kilian, J., and Wigderson, A. 1988. Multi-prover interactive proofs: How to remove intractability assumptions. In Proceedings of Symposium on Theory of Computing. 113--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Blum, M. 1986. How to prove a theorem so no one else can claim it. In Proceedings of the International Congress of Mathematicians.Google ScholarGoogle Scholar
  6. Brassard, G., Chaum, D., and Crépeau, C. 1988. Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37, 2, 156--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Canetti, R., Halevi, S., and Steiner, M. 2005. Hardness amplification of weakly verifiable puzzles. In Proceedings of Theory of Cryptography Conference. 17--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chung, K.-M. and Liu, F.-H. 2010. Parallel repetition theorems for interactive arguments. In Proceedings of Theory of Cryptography Conference. 19--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chung, K.-M., Liu, F.-H., Lu, C.-J., and Yang, B.-Y. 2010. Efficient string-commitment from weak bit-commitment. In Proceedings of ASIACRYPT. 268--282.Google ScholarGoogle Scholar
  10. Feige, U. and Kilian, J. 2000. Two-prover protocols - low error at affordable rates. SIAM J. Comput. 30, 1, 324--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Feige, U. and Shamir, A. 1989. Zero knowledge proofs of knowledge in two rounds. In Proceedings of CRYPTO. 526--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Feige, U., Fiat, A., and Shamir, A. 1988. Zero-knowledge proofs of identity. J. Cryptol. 1, 2, 77--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fortnow, L., Rompel, J., and Sipser, M. 1994. On the power of multi-prover interactive protocols. Theoret. Comput. Sci. 134, 2, 545--557. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Goldreich, O. 1998. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness. Springer-Verlag New York, Secaucus, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Goldreich, O. 2001. Foundations of Cryptography---Basic Tools. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goldreich, O. and Krawczyk, H. 1996. On the composition of zero-knowledge proof systems. SIAM J. Comput. 25, 1, 169--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Goldreich, O., Impagliazzo, R., Levin, L. A., Venkatesan, R., and Zuckerman, D. 1990. Security preserving amplification of hardness. In Proceedings of Foundations of Computer Science. 318--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Goldreich, O., Micali, S., and Wigderson, A. 1991. Proofs that yield nothing but their validity for all languages in np have zero-knowledge proof systems. J. ACM 38, 3, 691--729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Goldwasser, S. and Micali, S. 1984. Probabilistic encryption. J. Comput. Syst. Sci. 28, 2, 270--299.Google ScholarGoogle ScholarCross RefCross Ref
  20. Goldwasser, S., Micali, S., and Rivest, R. L. 1988. A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17, 2, 281--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Goldwasser, S., Micali, S., and Rackoff, C. 1989. The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 1, 186--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Haitner, I. 2009. A parallel repetition theorem for any interactive argument. In Proceedings of Foundations of Computer Science. 241--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Håstad, J., Pass, R., Wikström, D., and Pietrzak, K. 2010. An efficient parallel repetition theorem. In Proceedings of Theory of Cryptography Conference. 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Holenstein, T. and Schoenebeck, G. 2011. General hardness amplification of predicates and puzzles - (extended abstract). In Proceedings of TCC. 19--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Impagliazzo, R., Jaiswal, R., and Kabanets, V. 2007. Chernoff-type direct product theorems. In Proceedings of CRYPTO. 500--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jutla, C. S. 2010. Almost optimal bounds for direct product threshold theorem. In Proceedings of TCC. 37--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pandey, O., Pass, R., and Vaikuntanathan, V. 2008. Adaptive one-way functions and applications. In Proceedings of CRYPTO. 57--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pass, R. and Venkitasubramaniam, M. 2007. An efficient parallel repetition theorem for Arthur-Merlin games. In Proceedings of Symposium on Theory of Computing. 420--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pass, R., Tseng, W.-L. D., and Wikström, D. 2009. On the composition of public-coin zero-knowledge protocols. In Proceedings of CRYPTO. 160--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pietrzak, K. and Wikström, D. 2007. Parallel repetition of computationally sound protocols revisited. In Proceedings of Theory of Cryptography Conference. 86--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Raz, R. 1998. A parallel repetition theorem. SIAM J. Comput. 27, 3, 763--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Richardson, R. and Kilian, J. 1999. On the concurrent composition of zero-knowledge proofs. In Proceedings of Eurocrypt. 415--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tompa, M. and Woll, H. 1987. Random self-reducibility and zero knowledge interactive proofs of possession of information. In Proceedings of Foundations of Computer Science. 472--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xiao, D. 2011. (Nearly) round-optimal black-box constructions of commitments secure against selective opening attacks. In Proceedings of 8th TCC. 541--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yao, A. C.-C. 1982. Theory and applications of trapdoor functions (extended abstract). In Proceedings of Foundations of Computer Science. 80--91. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Parallel Repetition Theorem for Constant-Round Arthur-Merlin Proofs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computation Theory
      ACM Transactions on Computation Theory  Volume 4, Issue 4
      November 2012
      57 pages
      ISSN:1942-3454
      EISSN:1942-3462
      DOI:10.1145/2382559
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 November 2012
      • Accepted: 1 July 2012
      • Revised: 1 March 2011
      • Received: 1 December 2010
      Published in toct Volume 4, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader