skip to main content
research-article

3D shape regression for real-time facial animation

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a real-time performance-driven facial animation system based on 3D shape regression. In this system, the 3D positions of facial landmark points are inferred by a regressor from 2D video frames of an ordinary web camera. From these 3D points, the pose and expressions of the face are recovered by fitting a user-specific blendshape model to them. The main technical contribution of this work is the 3D regression algorithm that learns an accurate, user-specific face alignment model from an easily acquired set of training data, generated from images of the user performing a sequence of predefined facial poses and expressions. Experiments show that our system can accurately recover 3D face shapes even for fast motions, non-frontal faces, and exaggerated expressions. In addition, some capacity to handle partial occlusions and changing lighting conditions is demonstrated.

Skip Supplemental Material Section

Supplemental Material

tp096.mp4

mp4

21.4 MB

References

  1. Beeler, T., Bickel, B., Beardsley, P., Sumner, R., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graph. 29, 4, 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. 30, 4, 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Besl, P., and McKay, H. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bingham, E., and Mannila, H. 2001. Random projection in dimensionality reduction: Applications to image and text data. In Knowledge Discovery and Data Mining, 245--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proceedings of SIGGRAPH, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graph. 29, 4, 41:1--41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 5 (Sept.), 1190--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cao, X., Wei, Y., Wen, F., and Sun, J. 2012. Face alignment by explicit shape regression. In IEEE CVPR, 2887--2894. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cao, C., Weng, Y., Zhou, S., Tong, Y., and Zhou, K. 2013. FaceWarehouse: a 3D Facial Expression Database for Visual Computing. IEEE TVCG, under revision.Google ScholarGoogle Scholar
  10. Castelan, M., Smith, W. A., and Hancock, E. R. 2007. A coupled statistical model for face shape recovery from brightness images. IEEE Trans. Image Processing 16, 4, 1139--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chai, J.-X., Xiao, J., and Hodgins, J. 2003. Vision-based control of 3d facial animation. In Symp. Comp. Anim., 193--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cootes, T. F., Ionita, M. C., Lindner, C., and Sauer, P. 2012. Robust and accurate shape model fitting using random forest regression voting. In ECCV, VII:278--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. DeCarlo, D., and Metaxas, D. 2000. Optical flow constraints on deformable models with applications to face tracking. Int. Journal of Computer Vision 38, 2, 99--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dementhon, D. F., and Davis, L. S. 1995. Model-based object pose in 25 lines of code. Int. J. Comput. Vision 15, 1--2, 123--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dollar, P., Welinder, P., and Perona, P. 2010. Cascaded pose regression. In IEEE CVPR, 1078--1085.Google ScholarGoogle Scholar
  16. Ekman, P., and Friesen, W. 1978. Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press.Google ScholarGoogle Scholar
  17. Essa, I., Basu, S., Darrell, T., and Pentland, A. 1996. Modeling, tracking and interactive animation of faces and heads: Using input from video. In Computer Animation, 68--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Huang, D., and la Torre, F. D. 2012. Facial action transfer with personalized bilinear regression. In ECCV, II:144--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Huang, H., Chai, J., Tong, X., and Wu, H.-T. 2011. Leveraging motion capture and 3d scanning for high-fidelity facial performance acquisition. ACM Trans. Graph. 30, 4, 74:1--74:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kholgade, N., Matthews, I., and Sheikh, Y. 2011. Content retargeting using parameter-parallel facial layers. In Symp. Computer Animation, 195--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lewis, J. P., and Anjyo, K. 2010. Direct manipulation blendshapes. IEEE CG&A 30, 4, 42--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. ACM Trans. Graph. 29, 4, 32:1--32:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Matthews, I., Xiao, J., and Baker, S. 2007. 2D vs. 3D deformable face models: Representational power, construction, and real-time fitting. Int. J. Computer Vision 75, 1, 93--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., and Salesin, D. H. 1998. Synthesizing realistic facial expressions from photographs. In Proceedings of SIGGRAPH, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pighin, F., Szeliski, R., and Salesin, D. 1999. Resynthesizing facial animation through 3d model-based tracking. In Int. Conf. Computer Vision, 143--150.Google ScholarGoogle Scholar
  26. Saragih, J., Lucey, S., and Cohn, J. 2011. Real-time avatar animation from a single image. In AFGR, 213--220.Google ScholarGoogle Scholar
  27. Seo, J., Irving, G., Lewis, J. P., and Noh, J. 2011. Compression and direct manipulation of complex blendshape models. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24, 3, 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Weise, T., Li, H., Gool, L. V., and Pauly, M. 2009. Face/off: Live facial puppetry. In Symp. Computer Animation, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weise, T., Bouaziz, S., Li, H., and Pauly, M. 2011. Realtime performance-based facial animation. ACM Trans. Graph. 30, 4 (July), 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Williams, L. 1990. Performance driven facial animation. In Proceedings of SIGGRAPH, 235--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xiao, J., Chai, J., and Kanade, T. 2006. A closed-form solution to non-rigid shape and motion recovery. Int. J. Computer Vision 67, 2, 233--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yang, F., Wang, J., Shechtman, E., Bourdev, L., and Metaxas, D. 2011. Expression flow for 3D-aware face component transfer. ACM Trans. Graph. 30, 4, 60:1--60:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. ACM Trans. Graph. 23, 3, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 11, 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 3D shape regression for real-time facial animation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader