skip to main content
10.1145/2463372.2463469acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Constructing low star discrepancy point sets with genetic algorithms

Published:06 July 2013Publication History

ABSTRACT

Geometric discrepancies are standard measures to quantify the irregularity of distributions. They are an important notion in numerical integration. One of the most important discrepancy notions is the so-called star discrepancy. Roughly speaking, a point set of low star discrepancy value allows for a small approximation error in quasi-Monte Carlo integration. It is thus the most studied discrepancy notion.

In this work we present a new algorithm to compute point sets of low star discrepancy. The two components of the algorithm (for the optimization and the evaluation, respectively) are based on evolutionary principles. Our algorithm clearly outperforms existing approaches. To the best of our knowledge, it is also the first algorithm which can be adapted easily to optimize inverse star discrepancies.

References

  1. E. Braaten and G. Weller. An improved low-discrepancy sequence for multidimensional quasi-Monte Carlo integration. J. of Comput. Phys., 33(2):249--258, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  2. F.-M. De Rainville, C. Gagné, O. Teytaud, and D. Laurendeau. Optimizing low-discrepancy sequences with an evolutionary algorithm. In Proc. of GECCO'09, pages 1491--1498. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F.-M. De Rainville, C. Gagné, O. Teytaud, and D. Laurendeau. Evolutionary optimization of low-discrepancy sequences. ACM Trans. Model. Comput. Simul., 22(2):9:1--9:25, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. Deb, A. Pratab, S. Agarwal, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Trans. Evolut. Comput., 6(2):849--858, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Dick and F. Pillichshammer. Digital Nets and Sequences. Cambridge University Press, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. P. Dobkin, D. Eppstein, and D. P. Mitchell. Computing the discrepancy with applications to supersampling patterns. ACM Trans. Graph., 15:354--376, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. Doerr, M. Gnewuch, and M. Wahlström. Algorithmic construction of low-discrepancy point sets via dependent randomized rounding. J. Complexity, 26:490--507, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. Doerr, F.-M. De Rainville, and C. Gagné. A database for low star discrepancy point sets and sequences. Available at http://qrand.gel.ulaval.ca.Google ScholarGoogle Scholar
  9. C. Doerr, M. Gnewuch, and M. Wahlström. Calculation of discrepancy measures and applications. Preprint, 2013. Available online on http://www.mpi-inf.mpg.de/ winzen/publications.html.Google ScholarGoogle Scholar
  10. P. Giannopoulus, C. Knauer, M. Wahlström, and D. Werner. Hardness of discrepancy computation and epsilon-net verification in high dimensions. J. Complexity, 28:162--176, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Gnewuch. Entropy, randomization, derandomization, and discrepancy. In L. Plaskota and H. Woźniakowski, editors, Monte Carlo and Quasi-Monte Carlo Methods 2010, pages 43--78. Springer-Verlag, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Gnewuch, A. Srivastav, and C. Winzen. Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. J. Complexity, 25:115--127, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Gnewuch, M. Wahlström, and C. Winzen. A new randomized algorithm to approximate the star discrepancy based on threshold accepting. SIAM J. Numer. Anal., 50:781--807, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In Proc. of FOGA'90, pages 69--93. Morgan Kaufmann, 1990.Google ScholarGoogle Scholar
  15. D. E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman problem. In Proc. of ICGA'85, pages 154--159. Lawrence Erlbaum Associates, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2:84--90, 1960.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Hinrichs. Discrepancy, integration and tractability. Preprint, 2012. Available online on http://users.minet.uni-jena.de/~hinrichs/publicat.html.Google ScholarGoogle Scholar
  18. E. Hlawka. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl., 54:325--333, 1961.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Matoušek. Geometric Discrepancy. Springer, 2nd edition, 2010.Google ScholarGoogle Scholar
  20. H. Niederreiter. Discrepancy and convex programming. Ann. Mat. Pura Appl., 93:89--97, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems. Vol. 2, Standard Information for Functionals. EMS Tracts in Mathematics. European Mathematical Society, 2010.Google ScholarGoogle Scholar
  23. S. Tezuka. Uniform Random Number: Theory and practice. The Kluwer International Series in Engineering and Computer Science. 315. Kluwer Academic Publishers, 1995.Google ScholarGoogle Scholar
  24. E. Thiémard. An algorithm to compute bounds for the star discrepancy. J. Complexity, 17:850--880, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Thiémard. Optimal volume subintervals with k points and star discrepancy via integer programming. Math. Meth. Oper. Res., 54:21--45, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. G. van der Corput. Verteilungsfunktionen. In Akademie van Wetenschappen, volume 38, pages 813--821. KNAW, 1935.Google ScholarGoogle Scholar
  27. M. Wahlström. Implementations of the DEM- and the TA-algorithm. Available at http://www.mpi-inf.mpg.de/~wahl/.Google ScholarGoogle Scholar

Index Terms

  1. Constructing low star discrepancy point sets with genetic algorithms

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          GECCO '13: Proceedings of the 15th annual conference on Genetic and evolutionary computation
          July 2013
          1672 pages
          ISBN:9781450319638
          DOI:10.1145/2463372
          • Editor:
          • Christian Blum,
          • General Chair:
          • Enrique Alba

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 July 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          GECCO '13 Paper Acceptance Rate204of570submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

          Upcoming Conference

          GECCO '24
          Genetic and Evolutionary Computation Conference
          July 14 - 18, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader