skip to main content
10.1145/2465506.2465516acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Cylindrical algebraic decompositions for boolean combinations

Published:26 June 2013Publication History

ABSTRACT

This article makes the key observation that when using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is not always the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This motivates our definition of a Truth Table Invariant CAD (TTICAD). We generalise the theory of equational constraints to design an algorithm which will efficiently construct a TTICAD for a wide class of problems, producing stronger results than when using equational constraints alone. The algorithm is implemented fully in Maple and we present promising results from experimentation.

References

  1. R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising Problem Formulation for Cylindrical Algebraic Decomposition. In Press: Proc. CICM '13. Preprint: http://opus.bath.ac.uk/34373.Google ScholarGoogle Scholar
  2. C.W. Brown. Simplification of truth-invariant cylindrical algebraic decompositions. Proc. ISSAC '98, pages 295--301, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C.W. Brown. QEPCAD B: A program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin, 37:4, pages 97--108, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C.W. Brown. The McCallum projection, lifting, and order-invariance. Technical report, U.S. Naval Academy, Computer Science Department, 2005.Google ScholarGoogle Scholar
  5. C.W. Brown and J.H. Davenport. The Complexity of Quantifier Elimination and Cylindrical Algebraic Decomposition. Proc. ISSAC '07, pages 54--60, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C.W. Brown and S. McCallum. On using bi-equational constraints in CAD construction. Proc. ISSAC '05, pages 76--83, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. Buchberger and H. Hong. Speeding-up Quantifier Elimination by Gröbner Bases. RISC Technical Report 91-06, 1991.Google ScholarGoogle Scholar
  8. C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing Cylindrical Algebraic Decomposition via Triangular Decomposition. Proc. ISSAC '09, pages 95--102, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. Proc. 2nd. GI Conference Automata Theory & Formal Languages, pages 134--183, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G.E. Collins. Quantifier elimination by cylindrical algebraic decomposition -- twenty years of progess. Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 8--23, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  11. G.E. Collins and H. Hong. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination. J. Symbolic Comp., 12:3, pages 299--328, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program verification in the presence of complex numbers, functions with branch cuts etc. Proc. SYNASC '12, pages 83--88, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J.H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential. J. Symbolic Comp., 5:1--2, pages 29--35, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Dolzmann, A. Seidl, and Th. Sturm. Efficient Projection Orders for CAD. Proc. ISSAC '04, pages 111--118, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. England. An implementation of CAD utilising McCallum projection in Maple. University of Bath, Dept. Computer Science Technical Report Series, 2013:2. http://opus.bath.ac.uk/33180, 2013.Google ScholarGoogle Scholar
  16. H. Hong and M. Safey El Din. Variant quantifier elimination. J. Symbolic. Comp., 47:883--901, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. W. Kahan. Branch Cuts for Complex Elementary Functions. A. Iserles and M.J.D. Powell, editors, Proc. The State of the Art in Numerical Analysis, pages 165--211, 1987.Google ScholarGoogle Scholar
  18. S. McCallum. An Improved Projection Operation for Cylindrical Algebraic Decomposition of Three-dimensional Space. J. Symbolic Comp., 5:1--2, pages 141--161, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. McCallum. An Improved Projection Operation for Cylindrical Algebraic Decomposition. Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 242--268, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. McCallum. On Projection in CAD-Based Quantifier Elimination with Equational Constraints. Proc. ISSAC '99, pages 145--149, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. McCallum. On Propagation of Equational Constraints in CAD-Based Quantifier Elimination. Proc. ISSAC '01, pages 223--230, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of Branch Cuts. Communications in Computer Algebra, 44:132--135, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J.T. Schwartz and M. Sharir. On the "Piano-Movers" Problem: II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds. Adv. Appl. Math., 4:298--351, 1983.Google ScholarGoogle Scholar
  24. A. Strzeboński. Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Computation, 41:9, pages 1021--1038, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Strzeboński. Computation with semialgebraic sets represented by cylindrical algebraic formulas. Proc. ISSAC '10, pages 61--68. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D.J. Wilson, R.J. Bradford, and J.H. Davenport. A Repository for CAD Examples. ACM Communications in Computer Algebra, 46:3 pages 67--69, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Cylindrical algebraic decompositions for boolean combinations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation
        June 2013
        400 pages
        ISBN:9781450320597
        DOI:10.1145/2465506

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 June 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader