skip to main content
10.1145/2486001.2486019acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

B4: experience with a globally-deployed software defined wan

Published:27 August 2013Publication History

ABSTRACT

We present the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet. B4 has a number of unique characteristics: i) massive bandwidth requirements deployed to a modest number of sites, ii) elastic traffic demand that seeks to maximize average bandwidth, and iii) full control over the edge servers and network, which enables rate limiting and demand measurement at the edge.

These characteristics led to a Software Defined Networking architecture using OpenFlow to control relatively simple switches built from merchant silicon. B4's centralized traffic engineering service drives links to near 100% utilization, while splitting application flows among multiple paths to balance capacity against application priority/demands. We describe experience with three years of B4 production deployment, lessons learned, and areas for future work.

References

  1. Al-Fares, M., Loukissas, A., and Vahdat, A. A Scalable, Commodity Data Center Network Architecture. In Proc. SIGCOMM (New York, NY, USA, 2008), ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allalouf, M., and Shavitt, Y. Centralized and Distributed Algorithms for Routing and Weighted Max-Min Fair Bandwidth Allocation. IEEE/ACM Trans. Networking 16, 5 (2008), 1015--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Aukia, P., Kodialam, M., Koppol, P. V., Lakshman, T. V., Sarin, H., and Suter, B. RATES: A Server for MPLS Traffic Engineering. IEEE Network Magazine 14, 2 (March 2000), 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and Swallow, G. RSVP-TE: Extensions to RSVP for LSP Tunnels. RFC 3209, IETF, United States, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and McManus, J. Requirements for Traffic Engineering Over MPLS. RFC 2702, IETF, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh, A., and van der Merwe, K. Design and Implementation of a Routing Control Platform. In Proc. of NSDI (April 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., and Shenker, S. Ethane: Taking Control of the Enterprise. In Proc. SIGCOMM (August 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Casado, M., Garfinkel, T., Akella, A., Freedman, M. J., Boneh, D., McKeown, N., and Shenker, S. SANE: A Protection Architecture for Enterprise Networks. In Proc. of Usenix Security (August 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chandra, T. D., Griesemer, R., and Redstone, J. Paxos Made Live: an Engineering Perspective. In Proc. of the ACM Symposium on Principles of Distributed Computing (New York, NY, USA, 2007), ACM, pp. 398--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, T., Yoon, S., Chung, H., Kim, C., Park, J., Lee, B., and Jeong, T. Design and Implementation of Traffic Engineering Server for a Large-Scale MPLS-Based IP Network. In Revised Papers from the International Conference on Information Networking, Wireless Communications Technologies and Network Applications-Part I (London, UK, UK, 2002), ICOIN '02, Springer-Verlag, pp. 699--711. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee, S. DevoFlow: Scaling Flow Management for High-Performance Networks. In Proc. SIGCOMM (2011), pp. 254--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Danna, E., Hassidim, A., Kaplan, H., Kumar, A., Mansour, Y., Raz, D., and Segalov, M. Upward Max Min Fairness. In INFOCOM (2012), pp. 837--845.Google ScholarGoogle Scholar
  13. Danna, E., Mandal, S., and Singh, A. A Practical Algorithm for Balancing the Max-min Fairness and Throughput Objectives in Traffic Engineering. In Proc. INFOCOM (March 2012), pp. 846--854.Google ScholarGoogle Scholar
  14. Elwalid, A., Jin, C., Low, S., and Widjaja, I. MATE: MPLS Adaptive Traffic Engineering. In Proc. IEEE INFOCOM (2001), pp. 1300--1309.Google ScholarGoogle Scholar
  15. Farrington, N., Rubow, E., and Vahdat, A. Data Center Switch Architecture in the Age of Merchant Silicon. In Proc. Hot Interconnects (August 2009), IEEE, pp. 93--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fortz, B., Rexford, J., and Thorup, M. Traffic Engineering with Traditional IP Routing Protocols. IEEE Communications Magazine 40 (2002), 118--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fortz, B., and Thorup, M. Increasing Internet Capacity Using Local Search. Comput. Optim. Appl. 29, 1 (October 2004), 13--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A., Patel, P., and Sengupta, S. VL2: A Scalable and Flexible Data Center Network. In Proc. SIGCOMM (August 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J., Xie, G., Yan, H., Zhan, J., and Zhang, H. A Clean Slate 4D Approach to Network Control and Management. SIGCOMM CCR 35, 5 (2005), 41--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Greenberg, A., Lahiri, P., Maltz, D. A., Patel, P., and Sengupta, S. Towards a Next Generation Data Center Architecture: Scalability and Commoditization. In Proc. ACM workshop on Programmable Routers for Extensible Services of Tomorrow (2008), pp. 57--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker, S. NOX: Towards an Operating System for Networks. In SIGCOMM CCR (July 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. He, J., and Rexford, J. Toward Internet-wide Multipath Routing. IEEE Network Magazine 22, 2 (March 2008), 16--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., and Wattenhofer, R. Have Your Network and Use It Fully Too: Achieving High Utilization in Inter-Datacenter WANs. In Proc. SIGCOMM (August 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kandula, S., Katabi, D., Davie, B., and Charny, A. Walking the Tightrope: Responsive Yet Stable Traffic Engineering. In Proc. SIGCOMM (August 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kipp, S. Bandwidth Growth and the Next Speed of Ethernet. Proc. North American Network Operators Group (October 2012).Google ScholarGoogle Scholar
  26. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., and Shenker, S. Onix: a Distributed Control Platform for Large-scale Production Networks. In Proc. OSDI (2010), pp. 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lakshman, T., Nandagopal, T., Ramjee, R., Sabnani, K., and Woo, T. The Softrouter Architecture. In Proc. HotNets (November 2004).Google ScholarGoogle Scholar
  28. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and Turner, J. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM CCR 38, 2 (2008), 69--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., and Diot, C. Traffic Matrix Estimation: Existing Techniques and New Directions. In Proc. SIGCOMM (New York, NY, USA, 2002), ACM, pp. 161--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nascimento, M. R., Rothenberg, C. E., Salvador, M. R., and Magalh\ aes, M. F. QuagFlow: Partnering Quagga with OpenFlow (Poster). In Proc. SIGCOMM (2010), pp. 441--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. OpenFlow Specification. http://www.openflow.org/wp/documents/.Google ScholarGoogle Scholar
  32. Rothenberg, C. E., Nascimento, M. R., Salvador, M. R., Corrêa, C. N. A., Cunha de Lucena, S., and Raszuk, R. Revisiting Routing Control Platforms with the Eyes and Muscles of Software-defined Networking. In Proc. HotSDN (2012), pp. 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Roughan, M., Thorup, M., and Zhang, Y. Traffic Engineering with Estimated Traffic Matrices. In Proc. IMC (2003), pp. 248--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Scoglio, C., Anjali, T., de Oliveira, J. C., Akyildiz, I. F., and UhI, G. TEAM: A Traffic Engineering Automated Manager for DiffServ-based MPLS Networks. Comm. Mag. 42, 10 (October 2004), 134--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., and Parulkar, G. FlowVisor: A Network Virtualization Layer. Tech. Rep. OPENFLOW-TR-2009--1, OpenFlow, October 2009.Google ScholarGoogle Scholar
  36. Suchara, M., Xu, D., Doverspike, R., Johnson, D., and Rexford, J. Network Architecture for Joint Failure Recovery and Traffic Engineering. In Proc. ACM SIGMETRICS (2011), pp. 97--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thaler, D. Multipath Issues in Unicast and Multicast Next-Hop Selection. RFC 2991, IETF, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, H., Xie, H., Qiu, L., Yang, Y. R., Zhang, Y., and Greenberg, A. COPE: Traffic Engineering in Dynamic Networks. In Proc. SIGCOMM (2006), pp. 99--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Xu, D., Chiang, M., and Rexford, J. Link-state Routing with Hop-by-hop Forwarding Can Achieve Optimal Traffic Engineering. IEEE/ACM Trans. Netw. 19, 6 (December 2011), 1717--1730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yu, M., Rexford, J., Freedman, M. J., and Wang, J. Scalable flow-based networking with DIFANE. In Proc. SIGCOMM (2010), pp. 351--362. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. B4: experience with a globally-deployed software defined wan

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGCOMM '13: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM
            August 2013
            580 pages
            ISBN:9781450320566
            DOI:10.1145/2486001
            • cover image ACM SIGCOMM Computer Communication Review
              ACM SIGCOMM Computer Communication Review  Volume 43, Issue 4
              October 2013
              595 pages
              ISSN:0146-4833
              DOI:10.1145/2534169
              Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 August 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            SIGCOMM '13 Paper Acceptance Rate38of246submissions,15%Overall Acceptance Rate554of3,547submissions,16%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader