skip to main content
research-article

Understand users’ comprehension and preferences for composing information visualizations

Published:01 February 2014Publication History
Skip Abstract Section

Abstract

We are developing an automated visualization system that helps users combine two or more existing information graphics to form an integrated view. To establish empirical foundations for building such a system, we designed and conducted two studies on Amazon Mechanical Turk to understand users’ comprehension and preferences of composite visualization under different conditions (e.g., data and tasks). In Study 1, we collected more than 1,500 textual descriptions capturing about 500 participants’ insights of given information graphics, which resulted in a task-oriented taxonomy of visual insights. In Study 2, we asked 240 participants to rank composite visualizations by their suitability for acquiring a given visual insight identified in Study 1, which resulted in ranked user preferences of visual compositions for acquiring each type of insight. In this article, we report the details of our two studies and discuss the broader implications of our crowdsourced research methodology and results to HCI-driven visualization research.

References

  1. J. S. Allwood and P. Gärdenfors. 1999. Cognitive Semantics: Meaning and Cognition. John Benjamins Publishing Company.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. G. Altonji and R. M. Blank. 1999. Race and gender in the labor market. Handbook of Labor Economics 3, 3143--3259.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. Amar, J. Eagan, and J. Stasko. 2005. Low-level components of analytic activity in information visualization. In InfoVis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. J. Anscombe. 1973. Graphs in statistical analysis. American Statistician 27, 17--21.Google ScholarGoogle Scholar
  5. L. W. Barsalou. 1999. Perceptual symbol systems. Behavioral and Brain Sciences 22, 4, 577--660.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. A. Becker, W. S. Cleveland, and M.-J. Shyu. 1996. The visual design and control of trellis display. Journal of Computational and Graphical Statistics 5, 2 (1996), 123--155.Google ScholarGoogle Scholar
  7. A. J. Berinsky, G. A. Huber, and G. S. Lenz. 2012. Evaluating online labor markets for experimental research: Amazon.com’s Mechanical Turk. Political Analysis (R. M. Alvarez, ed.). DOI: http://dx.doi.org/10.1093/pan/mpr057Google ScholarGoogle Scholar
  8. J. Bertin. 1983. Semiology of Graphics (W. J. Berg, trans.). University of Wisconsin Press, Madison, WI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. J. Blocker and D. L. Eckberg. 1997. Gender and environmentalism: Results from the 1993 general social survey. Social Science Quarterly 78, 841--858.Google ScholarGoogle Scholar
  10. M. Canham and M. Hegarty. 2010. Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction 20, 2, 155--166. DOI: http://dx.doi.org/10.1016/j.learninstruc.2009.02.014Google ScholarGoogle ScholarCross RefCross Ref
  11. P. A. Carpenter and P. Shah. 1998. A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied 4, 2 (1998), 75.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. M. Casner. 1991. Task-analytic approach to the automated design of graphic presentations. ACM Transactions on Graphics 10, 2 (1991), 111--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Chen and M. Czerwinski. 2000. Empirical evaluation of information visualization: An introduction. International Journal of Human-Computer Studies 53, 5 (2000), 631--635. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Chuah and S. Roth. 1996. On the semantics of interactive visualizations. In IEEE InfoVis’96. 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. W. Cleveland and R. McGill. 1985. Graphical perception and graphical methods for analyzing scientific data. Science 229, 828--833.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. Collins and S. Carpendale. 2007. VisLink: Revealing relationships amongst visualizations. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1192--1199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. W. Croft and D. A. Cruse. 2004. Cognitive Linguistics. Cambridge University Press.Google ScholarGoogle Scholar
  18. H. M. Culbertson and R. D. Powers. 1959. A study of graph comprehension difficulties. Educational Technology Research and Development 7, 3 (1959), 97--110.Google ScholarGoogle Scholar
  19. F. R. Curcio. 1989. Developing Graph Comprehension. Elementary and Middle School Activities. National Council of Teachers of Mathematics.Google ScholarGoogle Scholar
  20. C. Danis, F. Viegas, M. Wattenberg, and J. Kris. 2008. Your place or mine: Visualization as a community component. In CHI’08. 275--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. DeSanctis. 1984. Computer graphics as decision aids: Directions for research. Decision Sciences 15, 463--487.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Dörk, S. Carpendale, C. Collins, and C. Williamson. 2008. VisGets: Coordinated visualizations for Web-based information exploration and discovery. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1205--1212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Downey. 1995. When bigger is not better: Family size, parental resources, and children’s educational performance. American Sociological Review 60, 746--761.Google ScholarGoogle ScholarCross RefCross Ref
  24. V. Evans and M. Green. 2006. Cognitive Linguistics: An Introduction. Lawrence Erlbaum Associates.Google ScholarGoogle Scholar
  25. H. D. Fain, E. L. Kick, B. L. Davis, and T. J. Burns. 1997. World-system position, tropical climate, national development, and infant mortality: A cross-national analysis of 86 countries. Human Ecology Review 3, 197--203.Google ScholarGoogle Scholar
  26. G. Fauconnier. 1994. Mental Spaces: Aspects of Meaning Construction in Natural Language. Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  27. G. Fauconnier and M. Turner. 2008. The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books.Google ScholarGoogle Scholar
  28. C. J. Fillmore. 1985. Frames and the semantics of understanding. Quaderni di Semantica 6, 2 (1985), 222--254.Google ScholarGoogle Scholar
  29. L. Frank, M. Andresen, and T. Schmid. 2004. Obesity relationships with community design, physical activity, and time spent in cars. American Journal of Preventive Medicine 27, 87--96.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. Friedman. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32, 675--701.Google ScholarGoogle ScholarCross RefCross Ref
  31. S. N. Friel, F. R. Curcio, and G. W. Bright. 2001. Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education 124--158.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. Gillborn and H. S. Mirza. 2000. Educational Inequality: Mapping Race, Class and Gender. A Synthesis of Research Evidence. Office for Standards in Education, London.Google ScholarGoogle Scholar
  33. B. Glaser and A. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction.Google ScholarGoogle Scholar
  34. E. Goldsmith. 1984. Research into Illustration: An Approach and a Review. Cambridge University Press.Google ScholarGoogle Scholar
  35. D. Gotz and Z. Wen. 2009. Behavior-driven visualization recommendation. In IUI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. W. Hamming. 1950. Error detecting and error correcting codes. Bell System Technical Journal 29, 2, 147--160.Google ScholarGoogle ScholarCross RefCross Ref
  37. A. F. Hayes and K. Krippendorff. 2007. Answering the call for a standard reliability measure for coding data. Communication Methods and Measures 1, 1 (2007), 77--89.Google ScholarGoogle ScholarCross RefCross Ref
  38. J. Heer, F. B. Viegas, and M. Wattenberg. 2007. Voyagers and voyeurs: Supporting asynchronous collaborative information visualization. In CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Heer and M. Bostock. 2010. Crowdsourcing graphical perception: Using Mechanical Turk to assess visualization design. In CHI’10. 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Heer, N. Kong, and M. Agrawala. 2009. Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations. In CHI’09. 1203--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Heer and G. Robertson. 2008. Animated transitions in statistical data. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2008), 1240--1247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. Inselberg and B. Dimsdale. 1991. Parallel coordinates. In Human-Machine Interactive Systems. Springer, 199--233.Google ScholarGoogle Scholar
  43. P. G. Ipeirotis. 2010. Demographics of Mechanical Turk. CeDER-10-01 working paper.Google ScholarGoogle Scholar
  44. W. Javed and N. Elmqvist. 2012. Exploring the design space of composite visualization. In Pacific Visualization Symposium (PacificVis). 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. Johnson. 1990. The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. University of Chicago Press.Google ScholarGoogle Scholar
  46. S.-H. Kim, H. Yun, and J. S. Yi. 2012. How to filter out random clickers in a crowdsourcing-based study? In 2012 BELIV Workshop: Beyond Time and Errors-Novel Evaluation Methods for Visualization. 15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. O. Kitamura, T. Kuroiwa, Y. Kawamoto, and E. Kaneko. 1998. A study on the improved tanker structure against collision and grounding damage. In PRADS.Google ScholarGoogle Scholar
  48. S. M. Kosslyn. 1989. Understanding charts and graphs. Applied Cognitive Psychology 3, 185--226.Google ScholarGoogle ScholarCross RefCross Ref
  49. Z. Kövecses and G. Radden. 1998. Metonymy: Developing a cognitive linguistic view. Cognitive Linguistics 9, 37--78.Google ScholarGoogle ScholarCross RefCross Ref
  50. G. Lakoff. 1987. Women, Fire, and Dangerous Things. University of Chicago Press.Google ScholarGoogle Scholar
  51. G. Lakoff and M. Johnson. 2008. Metaphors We Live By. University of Chicago Press.Google ScholarGoogle Scholar
  52. J. Lemaire. 1985. Automobile Insurance: Actuarial Models. Hingham, MA: Kluwer-Nijhof.Google ScholarGoogle ScholarCross RefCross Ref
  53. J. Mackinlay. 1986. Automating the design of graphical presentations of relational information. ACM Transactions on Graphics 5, 2, 110--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. Mackinlay, P. Hanrahan, and C. Stolte. 2007. Show me: Automatic presentation for visual analysis. IEEE Transactions on Visual and Computer Graphics 13, 6 (2007), 1137--1144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. P. McCullagh and J. A. Nelder. 1989. Generalized Linear Models. Chapman & Hall.Google ScholarGoogle Scholar
  56. R. Metoyer, B. Lee, N. H. Riche, and M. Czerwinski. 2012. Understanding the verbal language and structure of end-user descriptions of data visualizations. In CHI’12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. National Center for Health Statistics. 2000. National Health Interview Survey.Google ScholarGoogle Scholar
  58. National Opinion Research Center. 1991. General Social Survey 1991 {United States}.Google ScholarGoogle Scholar
  59. National Opinion Research Center. 1993. General Social Survey 1993 {United States}.Google ScholarGoogle Scholar
  60. C. North. 2006. Visualization viewpoints: Toward measuring visualization insight. IEEE Computer Graphic and Application 26, 3 (2006), 6--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. S. Pinker. 1990. A theory of graph comprehension. Artificial Intelligence and the Future of Testing 73--126.Google ScholarGoogle Scholar
  62. H. Rosling. 2009. Homepage. Retrieved from www.gapminder.org.Google ScholarGoogle Scholar
  63. S. F. Roth, M. C. Chuah, S. Kerpedjiev, J. Kolojejchick, and P. Lucas. 1997. Toward an information visualization workspace: Combining multiple means of expression. International Journal of Human-Computer Interaction 12, 1 (1997), 131--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. S. F. Roth and J. Mattis. 1991. Automating the presentation of information. In AAAI.Google ScholarGoogle Scholar
  65. W. S. Sarle. 1990. The VARCLUS Procedure.Google ScholarGoogle Scholar
  66. P. Shah and E. G. Freedman. 2011. Bar and line graph comprehension: An interaction of top-down and bottom-up processes. Topics in Cognitive Science 3, 3 (2011), 560--578.Google ScholarGoogle ScholarCross RefCross Ref
  67. P. Shah, E. G. Freedman, and I. Vekiri. 2005. The comprehension of quantitative information in graphical displays. The Cambridge Handbook of Visuospatial Thinking 426--476.Google ScholarGoogle Scholar
  68. P. Shah, R. E. Mayer, and M. Hegarty. 1999. Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology 91, 4 (1999), 690.Google ScholarGoogle ScholarCross RefCross Ref
  69. B. Shneiderman. 1996. The eyes have it: A task by data type taxonomy of information visualizations. In IEEE Visual Languages’96. 336--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. D. K. Simkin and R. Hastie. 1986. An information-processing analysis of graph perception. Journal of the American Statistical Association 82, 454--465.Google ScholarGoogle ScholarCross RefCross Ref
  71. J. Stasko, R. Catrambone, M. Guzdial, and K. Mcdonald. 2000. An evaluation of space-filling information visualizations for depicting hierarchical structures. International Journal of Human-Computer Studies 53, 5 (2000), 663--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. L. Talmy. 2000. Toward a Cognitive Semantics. Vol. 2. MIT Press.Google ScholarGoogle Scholar
  73. J. J. Thomas and K. A. Cook. 2005. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society.Google ScholarGoogle Scholar
  74. E. R. Tufte and G. Howard. 1983. The Visual Display of Quantitative Information. Graphics Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. United Nations. 1995. World Economic and Social Survey 1995.Google ScholarGoogle Scholar
  76. F. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon. 2007. ManyEyes: A site for visualization at Internet scale. IEEE Trans. Vis. Comp. Graphics 13, 6 (2007), 1121--1128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Z. Wen and M. Zhou. 2008a. Evaluating the use of data transformation for information visualization. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1309--1316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Z. Wen and M. X. Zhou. 2008b. An optimization-based approach to dynamic data transformation for smart visualization. In IUI’08. 70--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Z. Wen, M. X. Zhou, and V. Aggarwal. 2005. An optimization-based approach to dynamic visual context management. In InfoVis. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. H. Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. H. Wickham and H. Hofmann. 2011. Product plots. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2223--2230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. L. Wilkinson. 2005. The Grammer of Graphics (2nd ed.). Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. L. Wilkinson. 2012. The grammar of graphics. In Handbook of Computation Statistics (J. E. Gentle, W. K. Härdle, and Y. Mori, eds.). Berlin/Heidelberg: Springer, 375--414.Google ScholarGoogle Scholar
  84. D. Woods. 1984. Visual momentum: A concept to improve the cognitive coupling of person and computer. International Journal of Man-Machine Studies 21, 229--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. M. Zhou and M. Chen. 2003. Automated generation of graphic sketches by examples. In IJCAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. M. X. Zhou and S. K. Feiner. 1996. Data characterization for automatically visualizing heterogeneous information. In IEEE Information Visualization ’96. 13--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. M. X. Zhou and S. K. Feiner. 1998. Visual task characterization for automated visual discourse synthesis. In CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. G. K. Zipf. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley.Google ScholarGoogle Scholar

Index Terms

  1. Understand users’ comprehension and preferences for composing information visualizations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computer-Human Interaction
      ACM Transactions on Computer-Human Interaction  Volume 21, Issue 1
      February 2014
      170 pages
      ISSN:1073-0516
      EISSN:1557-7325
      DOI:10.1145/2582013
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 February 2014
      • Accepted: 1 October 2013
      • Revised: 1 May 2013
      • Received: 1 September 2012
      Published in tochi Volume 21, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader