skip to main content
research-article

Online motion synthesis using sequential Monte Carlo

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We present a Model-Predictive Control (MPC) system for online synthesis of interactive and physically valid character motion. Our system enables a complex (36-DOF) 3D human character model to balance in a given pose, dodge projectiles, and improvise a get up strategy if forced to lose balance, all in a dynamic and unpredictable environment. Such contact-rich, predictive and reactive motions have previously only been generated offline or using a handcrafted state machine or a dataset of reference motions, which our system does not require.

For each animation frame, our system generates trajectories of character control parameters for the near future --- a few seconds --- using Sequential Monte Carlo sampling. Our main technical contribution is a multimodal, tree-based sampler that simultaneously explores multiple different near-term control strategies represented as parameter splines. The strategies represented by each sample are evaluated in parallel using a causal physics engine. The best strategy, as determined by an objective function measuring goal achievement, fluidity of motion, etc., is used as the control signal for the current frame, but maintaining multiple hypotheses is crucial for adapting to dynamically changing environments.

Skip Supplemental Material Section

Supplemental Material

References

  1. Al Borno, M., de Lasa, M., and Hertzmann, A. 2013. Trajectory optimization for full-body movements with complex contacts. IEEE Transactions on Visualization and Computer Graphics 19, 8, 1405--1414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing 50, 2, 174--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cohen, M. F. 1992. Interactive spacetime control for animation. In Proc. SIGGRAPH '92, ACM, New York, NY, USA, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  5. da Silva, M., Durand, F., and Popović, J. 2009. Linear bellman combination for control of character animation. In Proc. SIGGRAPH 2009, ACM, New York, NY, USA, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. de Villiers, J. P., Godsill, S. J., and Singh, S. S. 2011. Particle predictive control. Journal of Statistical Planning and Inference 141, 5 (May), 1753--1763.Google ScholarGoogle ScholarCross RefCross Ref
  7. Deutscher, J., Blake, A., and Reid, I. 2000. Articulated body motion capture by annealed particle filtering. In IEEE Conference on Computer Vision and Pattern Recognition, 2000. Proceedings, vol. 2, 126--133 vol. 2.Google ScholarGoogle Scholar
  8. Doucet, A., and Johansen, A. M. 2009. A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering 12, 656--704.Google ScholarGoogle Scholar
  9. Erez, T., Lowrey, K., Tassa, Y., Kumar, V., Kolev, S., and Todorov, E. 2013. An integrated system for real-time model-predictive control of humanoid robots. In Proc. IEEE/RAS International Conference on Humanoid Robots (HUMANOIDS), HUMANOIDS.Google ScholarGoogle Scholar
  10. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 3, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Geijtenbeek, T., Pronost, N., Egges, A., and Overmars, M. H. 2011. Interactive character animation using simulated physics. Eurographics-State of the Art Reports 2.Google ScholarGoogle Scholar
  12. Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6 (Nov.), 206:1--206:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Heck, R., and Gleicher, M. 2007. Parametric motion graphs. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, I3D '07, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hämäläinen, P., Aila, T., Takala, T., and Alander, J. 2006. Mutated kd-tree importance sampling. In Proc. SCAI 2006, 39--45.Google ScholarGoogle Scholar
  15. Ihler, A. T., Sudderth, E. B., Freeman, W. T., and Willsky, A. S. 2003. Efficient multiscale sampling from products of gaussian mixtures. Advances in Neural Information Processing Systems 16, 1--8.Google ScholarGoogle Scholar
  16. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. Graph. 28, 1 (Feb.), 10:1--10:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kajiya, J. T. 1986. The rendering equation. In Proc. SIGGRAPH '86, ACM, New York, NY, USA, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kantas, N., Maciejowski, J. M., and Lecchini-Visintini, A. 2009. Sequential monte carlo for model predictive control. In Nonlinear Model Predictive Control, L. Magni, D. M. Raimondo, and F. Allgöwer, Eds., no. 384 in Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg, Jan., 263--273.Google ScholarGoogle Scholar
  19. Lasseter, J. 1987. Principles of traditional animation applied to 3D computer animation. In Proc. SIGGRAPH '87, ACM, New York, NY, USA, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. 2010. Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 4, 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1--43:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3, 81:1--81:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Muja, M., and Lowe, D. G. 2009. Fast approximate nearest neighbors with automatic algorithm configuration. In Proc. VISAPP (1), 331--340.Google ScholarGoogle Scholar
  24. Ngo, J. T., and Marks, J. 1993. Spacetime constraints revisited. In Proc. SIGGRAPH '93, ACM, New York, NY, USA, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pejsa, T., and Pandzic, I. 2010. State of the art in example-based motion synthesis for virtual characters in interactive applications. Computer Graphics Forum 29, 1, 202--226.Google ScholarGoogle ScholarCross RefCross Ref
  26. Reil, T., and Husbands, P. 2002. Evolution of central pattern generators for bipedal walking in a real-time physics environment. IEEE Transactions on Evolutionary Computation 6, 2, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rudoy, D., and Wolfe, P. 2006. Monte carlo methods for multimodal distributions. In Proc. Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC '06, 2019--2023.Google ScholarGoogle Scholar
  28. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schmidt, J., Fritsch, J., and Kwolek, B. 2006. Kernel particle filter for real-time 3D body tracking in monocular color images. In Proc. 7th International Conference on Automatic Face and Gesture Recognition, 2006. FGR 2006, 567--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sims, K. 1994. Evolving virtual creatures. In Proc. SIGGRAPH '94, ACM, New York, NY, USA, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stahl, D., and Hauth, J. 2011. PF-MPC: particle filter-model predictive control. Syst Control Lett 60, 8, 632--643.Google ScholarGoogle ScholarCross RefCross Ref
  32. Tassa, Y., Erez, T., and Todorov, E. 2012. Synthesis and stabilization of complex behaviors through online trajectory optimization. In Proc. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, IROS'12, 4906--4913.Google ScholarGoogle Scholar
  33. Thrun, S., Fox, D., and Burgard, W. 2000. Monte carlo localization with mixture proposal distribution. In Proc. AAAI/IAAI, 859--865. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Van Welbergen, H., Van Basten, B. J. H., Egges, A., Ruttkay, Z. M., and Overmars, M. H. 2010. Real time animation of virtual humans: A trade-off between naturalness and control. Computer Graphics Forum 29, 8, 2530--2554.Google ScholarGoogle ScholarCross RefCross Ref
  35. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. In ACM Trans. Graph., vol. 28, 60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proc. SIGGRAPH '88, ACM, New York, NY, USA, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Online motion synthesis using sequential Monte Carlo

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 4
      July 2014
      1366 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2601097
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2014
      Published in tog Volume 33, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader