skip to main content
10.1145/2660267.2660296acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article

Context-free Attacks Using Keyboard Acoustic Emanations

Authors Info & Claims
Published:03 November 2014Publication History

ABSTRACT

The emanations of electronic and mechanical devices have raised serious privacy concerns. It proves possible for an attacker to recover the keystrokes by acoustic signal emanations. Most existing malicious applications adopt context-based approaches, which assume that the typed texts are potentially correlated. Those approaches often incur a high cost during the context learning stage, and can be limited by randomly typed contents (e.g., passwords). Also, context correlations can increase the risk of successive false recognition. We present a context-free and geometry-based approach to recover keystrokes. Using off-the-shelf smartphones to record acoustic emanations from keystrokes, this design estimates keystrokes' physical positions based on the Time Difference of Arrival (TDoA) method. We conduct extensive experiments and the results show that more than 72.2\% of keystrokes can be successfully recovered.

References

  1. P. Arena. Apple iPhone 5 has three microphones and HD voice support, what's in it for you. http://www.phonearena.com/news/Apple-iPhone-5-has-three-microphones-and-HD-voice-support-whats-in-it-for-you_id34486, 2012. {Online; accessed 30-July-2014}.Google ScholarGoogle Scholar
  2. D. Asonov and R. Agrawal. Keyboard acoustic emanations. In Proceedings of IEEE Symposium on Security and Privacy, pages 3--11, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder. Acoustic side-channel attacks on printers. In Proceedings of USENIX Security Symposium, pages 307--322, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji. A methodology for empirical analysis of permission-based security models and its application to android. In Proceedings of ACM CCS, pages 73--84, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. O. Bauer. Some aspects of military line communicatoins as deployed by the german armed forces prior to 1945. In Proceedings of 5th Aunnual Colloquium, The History of Military Comunications, 1999.Google ScholarGoogle Scholar
  6. Y. Berger, A. Wool, and A. Yeredor. Dictionary attacks using keyboard acoustic emanations. In Proceedings of ACM CCS, pages 245--254, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Dagon, T. Martin, and T. Starner. Mobile phones as computing devices: The viruses are coming! IEEE Pervasive Computing, 3(4):11--15, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman. The visual microphone: Passive recovery of sound from video. ACM Transactions on Graphics, 33(4):79:1--79:10, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. V. Eck. Electromagnetic radiation from video display units: An eavesdropping risk? In Computers and Security, pages 4:269--286, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 36(SI):147--163, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Enck, M. Ongtang, and P. D. McDaniel. On lightweight mobile phone application certification. In Proceedings of ACM CCS, pages 235--245, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Girod, M. Lukac, V. Trifa, and D. Estrin. A self-calibrating distributed acoustic sensing platform. In Proceedings of ACM SenSys, pages 335--336, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a context-aware application. Wireless Networks, 8(2--3):187--197, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Hazas and A. Hopper. Broadband ultrasonic location systems for improved indoor positioning. IEEE TMC, 5(5):536--547, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Jia, Y. Luo, Y. Lin, and I. Kozintsev. Distributed microphone arrays for digital home and office. In Proceedings of IEEE ICASSP, pages 1065--1068, 2006.Google ScholarGoogle Scholar
  16. C. Knapp and G. C. Carter. The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing, 24(4):320--327, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Maróti, P. Völgyesi, S. Dóra, B. Kusy, A. Nádas, Á. Lédeczi, G. Balogh, and K. Molnár. Radio interferometric geolocation. In Proceedings of ACM SenSys, pages 1--12, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp)iphone: decoding vibrations from nearby keyboards using mobile phone accelerometers. In Proceedings of ACM CCS, pages 551--562, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Meng, J. Isenhower, C. Qin, and S. Nelakuditi. Can smartphone sensors enhance kinect experience? In Proceedings of ACM MobiHoc, pages 265--266, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury. Tapprints: your finger taps have fingerprints. In Proceedings of ACM MobiSys, pages 323--336, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Nordström, D. Aldman, F. Bjurefors, and C. Rohner. Search-based picture sharing with mobile phones. In Proceedings of ACM MobiHoc, pages 327--328, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Peng, G. Shen, and Y. Zhang. Beepbeep: A high-accuracy acoustic-based system for ranging and localization using COTS devices. ACM Trans. Embedded Comput. Syst., 11(1):4, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Qin, X. Bao, R. R. Choudhury, and S. Nelakuditi. Tagsense: a smartphone-based approach to automatic image tagging. In Proceedings of ACM MobiSys, pages 1--14, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Qiu, D. Chu, X. Meng, and T. Moscibroda. On the feasibility of real-time phone-to-phone 3d localization. In Proceedings of ACM SenSys, pages 190--203, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. Rui and D. Florencio. Time delay estimation in the presence of correlated noise and reverberation. In Proceedings of IEEE ICASSP, pages ii--133, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. SINGEL. Declassified NSA Document Reveals the Secret History of TEMPEST. http://www.wired.com/2008/04/nsa-release-se, 2004. {Online; accessed 23-July-2014}.Google ScholarGoogle Scholar
  27. S. Singh, S. Nelakuditi, R. R. Choudhury, and Y. Tong. Your smartphone can watch the road and you: mobile assistant for inattentive drivers. In Proceedings of ACM MobiHoc, pages 261--262, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey. Network, IEEE, 18(4):45--50, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. X. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes and timing attacks on ssh. In Proceedings of USENIX Security Symposium, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Sur, T. Wei, and X. Zhang. Autodirective audio capturing through a synchronized smartphone array. In Proceedings of ACM MobiSys, pages 28--41, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Thomas. Malware on the move., 2008.Google ScholarGoogle Scholar
  32. H. Wang and P. Chu. Voice source localization for automatic camera pointing system in videoconferencing. In Proceedings of IEEE ICASSP, pages 187--190, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Wang, K. Zhao, X. Zhang, and C. Peng. Ubiquitous keyboard for small mobile devices: harnessing multipath fading for fine-grained keystroke localization. In Proceedings of ACM MobiSys, pages 14--27, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin. Sensing vehicle dynamics for determining driver phone use. In MobiSys, pages 41--54, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan, Y. Chen, M. Gruteser, and R. P. Martin. Detecting driver phone use leveraging car speakers. In Proceedings of ACM MobiCom, pages 97--108, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Z. Zhang, D. Chu, X. Chen, and T. Moscibroda. Swordfight: enabling a new class of phone-to-phone action games on commodity phones. In Proceedings of ACM MobiSys, pages 1--14, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard acoustic emanations revisited. In Proceedings of ACM CCS, pages 373--382, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Context-free Attacks Using Keyboard Acoustic Emanations

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CCS '14: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security
          November 2014
          1592 pages
          ISBN:9781450329576
          DOI:10.1145/2660267

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 November 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          CCS '14 Paper Acceptance Rate114of585submissions,19%Overall Acceptance Rate1,261of6,999submissions,18%

          Upcoming Conference

          CCS '24
          ACM SIGSAC Conference on Computer and Communications Security
          October 14 - 18, 2024
          Salt Lake City , UT , USA

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader