skip to main content
research-article

Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding

Published:01 August 2014Publication History
Skip Abstract Section

Abstract

In 1994, Karl Sims' evolved virtual creatures showed the potential of evolutionary algorithms to produce natural, complex morphologies and behaviors [30]. One might assume that nearly 20 years of improvements in computational speed and evolutionary algorithms would produce far more impressive organisms, yet the creatures evolved in the field of artificial life today are not obviously more complex, natural, or intelligent. Fig. 2 demonstrates an example of similar complexity in robots evolved 17 years apart.

References

  1. J. E. Auerbach and J. C. Bongard. Dynamic resolution in the co-evolution of morphology and control. In Artificial Life XII: Proc. of the 12th International Conf. on the Simulation and Synthesis of Living Systems, 2010.Google ScholarGoogle Scholar
  2. J. E. Auerbach and J. C. Bongard. Evolving CPPNs to grow three-dimensional physical structures. In Proc. of the Genetic & Evolutionary Computation Conf., pages 627--634. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. E. Auerbach and J. C. Bongard. On the relationship between environmental and mechanical complexity in evolved robots. In Proc. of the Artificial Life Conf., pages 309--316, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. E. Auerbach and J. C. Bongard. On the relationship between environmental and morphological complexity in evolved robots. In Proc. of the Genetic & Evolutionary Computation Conf., pages 521--528. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Bongard. Evolving modular genetic regulatory networks. In Evolutionary Computation, 2002. Proc. of the 2002 Congress on, volume 2, pages 1872--1877. IEEE, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Clune, B. Beckmann, C. Ofria, and R. Pennock. Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 2764--2771, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Clune and H. Lipson. Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In Proc. of the European Conf. on Artificial Life, pages 144--148, 2011.Google ScholarGoogle Scholar
  8. J. Clune, J.-B. Mouret, and H. Lipson. The evolutionary origins of modularity. Proc. of the Royal Society B, 280(20122863), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance of indirect encoding across the continuum of regularity. IEEE Trans. on Evolutionary Computation, 15(4):346--367, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Gauci and K. O. Stanley. Generating large-scale neural networks through discovering geometric regularities. In Proc. of the Genetic & Evolutionary Computation Conf., pages 997--1004. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. D. Hiller and H. Lipson. Multi-material topological optimization of structures and mechanisms. In Proc. of the Genetic & Evolutionary Computation Conf., pages 1521--1528. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. D. Hiller and H. Lipson. Evolving amorphous robots. Artificial Life XII, pages 717--724, 2010.Google ScholarGoogle Scholar
  13. J. D. Hiller and H. Lipson. Automatic design and manufacture of soft robots. IEEE Trans. on Robotics, 28(2):457--466, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. D. Hiller and H. Lipson. Dynamic simulation of soft heterogeneous objects. ArXiv:1212.2845, 2012.Google ScholarGoogle Scholar
  15. S. Hirose and Y. Umetani. The development of soft gripper for the versatile robot hand. Mechanism and Machine Theory, 13(3):351--359, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  16. G. S. Hornby, H. Lipson, and J. B. Pollack. Generative representations for the automated design of modular physical robots. IEEE Trans. on Robotics and Automation, 19(4):703--719, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. S. Hornby and J. B. Pollack. Evolving L-systems to generate virtual creatures. Computers & Graphics, 25(6):1041--1048, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. Joachimczak and B. Wróbel. Coevolution of morphology and control of soft-bodied multicellular animats. In Proc. of the Genetic & Evolutionary Computation Conf., pages 561--568. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Komosinski and A. Rotaru-Varga. Comparison of different genotype encodings for simulated three dimensional agents. Artificial Life, 7(4):395--418, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Lee, J. Yosinski, K. Glette, H. Lipson, and J. Clune. Evolving gaits for physical robots with the HyperNEAT generative encoding: the benefits of simulation., 2013.Google ScholarGoogle Scholar
  21. J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through novelty search and local competition. In Proc. of the Genetic & Evolutionary Computation Conf., pages 211--218. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature, 406(6799):974--978, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  23. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. In ACM Siggraph, volume 21, pages 163--169, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J.-B. Mouret and J. Clune. An algorithm to create phenotype-fitness maps. Proc. of the Artificial Life Conf., pages 593--594, 2012.Google ScholarGoogle Scholar
  25. S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomous robots: Different approaches in evolutionary robotics. In Artificial Life IV, pages 190--197. Cambridge, MA: MIT Press, 1994.Google ScholarGoogle Scholar
  26. R. Pfeifer and J. C. Bongard. How the body shapes the way we think: a new view of intelligence. MIT press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Rieffel, F. Saunders, S. Nadimpalli, H. Zhou, S. Hassoun, J. Rife, and B. Trimmer. Evolving soft robotic locomotion in PhysX. In Proc. of the Genetic & Evolutionary Computation Conf., pages 2499--2504. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Sanan, J. Moidel, and C. G. Atkeson. A continuum approach to safe robots for physical human interaction. In Int'l Symposium on Quality of Life Technology, 2011.Google ScholarGoogle Scholar
  29. J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stanley. Picbreeder: evolving pictures collaboratively online. In Proc. of the 26th SIGCHI Conf. on Human Factors in Computing Systems, pages 1759--1768. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Sims. Evolving virtual creatures. In Proc. of the 21st Annual Conf. on Computer Graphics and Interactive Techniques, pages 15--22. ACM, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. K. O. Stanley. Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines, 8(2):131--162, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. O. Stanley, D. B. D'Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural networks. Artificial Life, 15(2):185--212, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99--127, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93--130, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. Trivedi, C. Rahn, W. Kier, and I. Walker. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3):99--117, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. Verbancsics and K. O. Stanley. Constraining connectivity to encourage modularity in HyperNEAT. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages 1483--1490. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Wall. Galib: A c++ library of genetic algorithm components. Mechanical Engineering Department, Massachusetts Institute of Technology, 87, 1996.Google ScholarGoogle Scholar
  38. B. G. Woolley and K. O. Stanley. On the deleterious effects of a priori objectives on evolution and representation. In Proc. of the Genetic and Evolutionary Computation Conf., pages 957--964. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM SIGEVOlution
    ACM SIGEVOlution  Volume 7, Issue 1
    August 2014
    24 pages
    EISSN:1931-8499
    DOI:10.1145/2661735
    Issue’s Table of Contents

    Copyright © 2014 Authors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 August 2014

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader