skip to main content
research-article

Hyperspectral Modeling of Skin Appearance

Published:08 May 2015Publication History
Skip Abstract Section

Abstract

Exploration of the hyperspectral domain offers a host of new research and application possibilities involving material appearance modeling. In this article, we address these prospects with respect to human skin, one of the most ubiquitous materials portrayed in synthetic imaging. We present the first hyperspectral model designed for the predictive rendering of skin appearance attributes in the ultraviolet, visible, and infrared domains. The proposed model incorporates the intrinsic bio-optical properties of human skin affecting light transport in these spectral regions, including the particle nature and distribution patterns of the main light attenuation agents found within the cutaneous tissues. Accordingly, it accounts for phenomena that significantly affect skin spectral signatures, both within and outside the visible domain, such as detour and sieve effects, that are overlooked by existing skin appearance models. Using a first-principles approach, the proposed model computes the surface and subsurface scattering components of skin reflectance taking into account not only the wavelength and the illumination geometry, but also the positional dependence of the reflected light. Hence, the spectral and spatial distributions of light interacting with human skin can be comprehensively represented in terms of hyperspectral reflectance and BSSRDF, respectively.

Skip Supplemental Material Section

Supplemental Material

References

  1. R. Anderson and J. Parrish. 1982. Optical properties of human skin. In The Science of Photomedicine, J. Regan and J. Parrish, Eds., Plenum Press, 147--194.Google ScholarGoogle Scholar
  2. M. Attas, T. Posthumus, B. Schattka, M. Sowa, H. Mantsch, and S. Zhang. 2002. Long-wavelength near-infrared spectroscopic imaging for in-vivo skin hydration measurements. Vibrat. Spectroscopy 28, 37--43.Google ScholarGoogle ScholarCross RefCross Ref
  3. G. V. G. Baranoski, T. F. Chen, B. W. Kimmel, E. Miranda, and D. Yim. 2012. On the noninvasive optical monitoring and differentiation of methemoglobinemia and sulfhemoglobinemia. J. Biomed. Optics 17, 9, 097005--1--14.Google ScholarGoogle ScholarCross RefCross Ref
  4. G. V. G. Baranoski, T. Dimson, T. F. Chen, B. Kimmel, D. Yim, and E. Miranda. 2012. Rapid dissemination of light transport models on the Web. IEEE Comput. Graph. Appl. 32, 10--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. V. G. Baranoski and A. Krishnaswamy. 2010. Light and Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann/Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. I. Blank. 1952. Factors which influence the water content of the stratum corneum. J. Investigat. Dermatol. 18, 6, 433--440.Google ScholarGoogle ScholarCross RefCross Ref
  7. W. G. Bruls and J. Van Der Leun. 1984. Forward scattering properties of human epidermal layers. Photochem. Photobiol. 40, 2, 231--242.Google ScholarGoogle ScholarCross RefCross Ref
  8. W. Butler. 1964. Absorption spectroscopy in vivo: Theory and application. Ann. Rev. Plant Phys. 15, 451--470.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. G. Cavalcanti, J. Scharcanski, and G. V. G. Baranoski. 2013. A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert. Syst. Appl. 40, 10, 4054--4064. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Chedekel. 1995. Photophysics and photochemistry of melanin. In Melanin: Its Role in Human Photoprotection, M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar, 11--22.Google ScholarGoogle Scholar
  11. B. Chen, K. Stamnes, and J. Stamnes. 2001. Validity of the diffusion approximation in bio-optical imaging. Appl. Optics 40, 34, 6356--6336.Google ScholarGoogle ScholarCross RefCross Ref
  12. T. F. Chen, G. V. G. Baranoski, B. W. Kimmel, and E. Miranda. 2014. Supplementary data for the hyperspectral modeling of skin appearance. NPSG, University of Waterloo, Canada.Google ScholarGoogle Scholar
  13. C. Cooksey and D. Allen. 2013. Reflectance measurements of human skin from the ultraviolet to the shortwave infrared (250 nm to 2500 nm). In Proceedings of the SPIE Conference on Active and Passive Signatures (SPIE'13). Vol. 8734.Google ScholarGoogle Scholar
  14. K. V. De Graaff. 1995. Human Anatomy, 4th Ed. W. C. Brown Publishers.Google ScholarGoogle Scholar
  15. E. D'eon and G. Irving. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4, 56:1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Donner and H. W. Jensen. 2006. A spectral bssrdf for shading human skin. In Proceedings of the 17th Eurographics Workshop on Rendering Techniques (EGSR'06). 409--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Donner, T. Weyrich, E. D'eon, R. Ramamoorthi, and S. Rusinkiewicz. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5, 140:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Doronin and I. Meglinski. 2011. Online object oriented monte carlo computational tool for needs of the biomedical optics. Biomed. Optics Express 2, 9, 2461--2469.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Dorsey, H. Rushmeier, and F. Sillion. 2007. Digital Modeling of Material Appearance. Morgan Kaufmann/Elsevier, Burlington, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Fredembach, N. Barbuscla, and S. Susstrunk. 2009. Combining visible and near-infrared images for realistic skin smoothing. In Proceedings of the 17th Color and Imaging Conference (CIC'09). 242--247.Google ScholarGoogle Scholar
  21. M. Fuchs, V. Blanz, H. Lensch, and H. Seidel. 2005. Reflectance from images: A model-based approach for human faces. IEEE Trans. Visual. Comput. Graph. 11, 3, 296--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Fulton. 1997. Utilizing the ultraviolet (uv detect) camera to enhance the appearance of photodamage and other skin conditions. Dermatol. Surgery 23, 163--169.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Ghosh, T. Hawkins, P. Peers, S. Frederiksen, and P. Debevec. 2008. Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 5, 139:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Greenberg, J. Arvo, E. Lafortune, K. Torrance, J. Ferwerda, B. Walter, B. Trumbore, P. Shirley, S. Pattanaik, and S. Foo. 1997. A framework for realistic image synthesis. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'97). 477--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Hamby. 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monitor. Assess. 32, 2, 135--154.Google ScholarGoogle ScholarCross RefCross Ref
  26. D. Hamby. 1995. A comparison of sensitivity analysis techniques. Health Phys. 68, 195--204.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Hanrahan and W. Krueger. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'93). 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Hansen, G. Atkinson, L. Smith, and M. Smith. 2010. 3D face reconstructions from photometric stereo using near infrared and visible light. Comput. Vis. Image Understand. 114, 942--951. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Hennessy, C. Oh, B. Diffey, K. Wakamatsu, S. Ito, and J. Rees. 2005. Eumelanin and pheomelanin concentrations in human epidermis before and after uvb irradiation. Pigment Cell Res. 18, 220--223.Google ScholarGoogle ScholarCross RefCross Ref
  30. A. Hielscher, S. Jacques, L. Wang, and F. Tittel. 1995. The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues. Phys. Med. Biol. 40, 1957--1975.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. Hunter and R. Harold. 1987. The Measurement of Appearance, 2nd ed. John Wiley and Sons.Google ScholarGoogle Scholar
  32. T. Igarashi, K. Nishino, and S. K. Nayar. 2007. The appearance of human skin: A survey. Foundat. Trends. Comput. Graph. Vis. 3, 1, 1--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. L. Jacques. 1996. Origins of tissue optical properties in the uva, visible, and nir regions. OSA TOPS Adv. Optical Imag. Photon Migrat. 2, 364--369.Google ScholarGoogle Scholar
  34. S. L. Jacques, C. A. Alter, and S. A. Prahl. 1987. Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci. 1, 309--333.Google ScholarGoogle Scholar
  35. J. Jacquez, J. Huss, W. Mckeehan, J. Dimitroff, and H. Kuppenhein. 1955a. Spectral reflectance of human skin in the region 0.7-2.6 μ. J. Appl. Physiol. 8, 297--299.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Jacquez, J. Huss, W. Mckeehan, J. Dimitroff, and H. Kuppenhein. 1955b. Spectral reflectance of human skin in the region 235--700 mμ. J. Appl. Physiol. 8, 212--214.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Jimenez, T. Scully, N. Barbosa, C. Donner, X. Alvarez, T. Vieira, P. Matts, V. Orvalho, D. Gutierrez, and T. Weyrich. 2010. A practical appearance model for dynamic facial color. ACM Trans. Graph. 29, 6, 141:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, R. Prum, and D. Brady. 2012. 3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. 31, 4, 38:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. W. Kimmel and G. V. G. Baranoski. 2007. A novel approach for simulating light interaction with particulate materials: Application to the modeling of sand spectral properties. Optics Express 15, 15, 9755--9777.Google ScholarGoogle ScholarCross RefCross Ref
  40. N. Kollias, R. M. Sayre, L. Zeise, and M. R. Chedekel. 1991. Photoprotection by melanin. J. Photochem. Photobiol. B9, 2, 135--60.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. Krishnaswamy and G. V. G. Baranoski. 2004a. A biophysically-based spectral model of light interaction with human skin. Comput. Graph. Forum 23, 3, 331--340.Google ScholarGoogle ScholarCross RefCross Ref
  42. A. Krishnaswamy and G. V. G. Baranoski. 2004b. Combining a shared-memory high performance computer and a heterogeneous cluster for the simulation of light interaction with human skin. In Proceedings of the 16th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'04). P. N. J. Gaudiot, M. L. Pilla, and S. Song, Eds, IEEE Computer Society, 166--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. P. Latimer. 1984. A wave-optics effect which enhances light absorption by chlorophyll in vivo. Photochem. Photobiol. 40, 2, 193--199.Google ScholarGoogle ScholarCross RefCross Ref
  44. T. S. Lister. 2013. Simulating the color of port wine stain skin. Ph.D. thesis, University of Southampton, UK http://eprints.soton.ac.uk/352088/1.hasCoversheetVersion/Lister.pdf.Google ScholarGoogle Scholar
  45. H. Mahler, J. Kulik, F. Gibbons, M. Gerrad, and J. Harrel. 2003. Effects of appearance-based interventions on sun protection intentions and self-reported behaviors. Health Psychol. 22, 2, 199--209.Google ScholarGoogle ScholarCross RefCross Ref
  46. S. Marschner, S. H. Westin, E. Lafortune, K. Torrance, and D. Greenberg. 1999. Reflectance measurements of human skin. Tech. rep. PCG-99-2, Program of Computer Graphics, Cornell University.Google ScholarGoogle Scholar
  47. E. J. Mccartney. 1976. Optics of the Atmosphere: Scattering by Molecules and Particles. John Wiley and Sons, New York.Google ScholarGoogle Scholar
  48. S. Merillou and D. Ghazanfarpour. 2008. A survey of aging and weathering phenomena in computer graphics. Comput. Graph. 32, 2, 159--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Natural Phenomena Simulation Group (NPSG). 2014. Run hylios online. School of Computer Science, University of Waterloo, Ontario, Canada. http://www.npsg.uwaterloo.ca/models/hylios.php.Google ScholarGoogle Scholar
  50. C. Ng and L. Li. 2001. A multi-layered reflection model of natural human skin. In Proceedings of the Computer Graphics International Conference (CGI'01). 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. F. Nicodemus, J. Richmond, J. Hsia, I. Ginsberg, and T. Limperis. 1992. Geometrical considerations and nomenclature for reflectance. In Physics-Based Vision Principles and Practice: Radiometry, L. Wolff, S. Shafer, and G. Healey, Eds. Jones and Bartlett, Boston, 94--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. K. Nielsen, L. Zhao, J. Stamnes, K. Stamnes, and J. Moan. 2004. Reflectance spectra of pigmented and nonpigmented skin in the uv spectral region. Photochem. Photobiol. 80, 450--455.Google ScholarGoogle ScholarCross RefCross Ref
  53. K. P. Nielsen, L. Zhao, J. J. Stamnes, K. Stamnes, and J. Moan. 2006. The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. J. Photochem. Photobio. B. 82, 3, 194--198.Google ScholarGoogle ScholarCross RefCross Ref
  54. A. S. Nunez. 2009. A physical model of human skin and its application for search and rescue. Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.Google ScholarGoogle Scholar
  55. R. L. Olson, J. Gaylor, and M. A. Everett. 1973. Skin color, melanin, and erythema. Arch. Dermatol. 108, 4, 541--544.Google ScholarGoogle ScholarCross RefCross Ref
  56. M. Pathak. 1995. Functions of melanin and protection by melanin. In Melanin: Its Role in Human Photoprotection, M. C. L. Zeise and T. Fitzpatrick, Eds, Valdenmar, 125--134.Google ScholarGoogle Scholar
  57. S. Prahl. 1988. Light transport in tissue. Ph.D. thesis, The University of Texas at Austin. http://omlc.org/∼prahl/pubs/pdf/prahl88.pdf.Google ScholarGoogle Scholar
  58. D. Sandidge. 2009. Digital Infrared Photography Photo Workshop. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. P. Schroeder, J. Haendeler, and J. Krutmann. 2008. The role of infrared radiation in photoaging of skin. Experimen. Gerontol. 43, 629--632.Google ScholarGoogle ScholarCross RefCross Ref
  60. J. Stam. 2001. An illumination model for a skin layer bounded by rough surfaces. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques (Eurographics'01). Springer, 39--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Stone. 2003. A Field Guide to Digital Color. AK Peters, Natick, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. G. Szabo, A. Gerald, M. Pathak, and T. B. Fitzpatrick. 1969. Racial differences in the fate of melanosomes in human epidermis. Nature 222, 5198, 1081--1082.Google ScholarGoogle Scholar
  63. T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Optical Soc. Amer. 65, 5, 531--536.Google ScholarGoogle ScholarCross RefCross Ref
  64. N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyabe. 2000. Mapping pigmentation in human skin by multi- visible-spectral imaging by inverse optical scattering technique. In Proceedings of the 8th IS&T/SID Color Imaging Conference (CIC'00). 81--84.Google ScholarGoogle Scholar
  65. V. Tuchin. 2007. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE.Google ScholarGoogle ScholarCross RefCross Ref
  66. M. Vrhel, R. Gershon, and L. Iwan. 1994. Measurement and analysis of object reflectance spectra. Color Res. Appl. 19, 1, 4--9.Google ScholarGoogle ScholarCross RefCross Ref
  67. L. Wang, S. Jacques, and L. Zheng. 1995. MCML -- Monte Carlo modelling of light transport in multi-layered tissues. Comput. Methods Prog. Biomed. 47, 131--146.Google ScholarGoogle ScholarCross RefCross Ref
  68. T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. Mcandless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. 2006. Analysis of human faces using a measurement-based skin reflectance model. In Proceedings of the 33rd International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH'06). ACM Press, New York, 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Yang, V. Tuchin, and A. Yaroslavsky. 2009. Principles of light-skin interactions. In Light-Based Therapies for Skin of Color, E. Baron, Ed., Springer, 1--44.Google ScholarGoogle Scholar
  70. D. Yim, G. V. G. Baranoski, B. W. Kimmel, T. F. Chen, and E. Miranda. 2012. A cell-based light interaction model for human blood. Comput. Graph. Forum 31, 2, 845--854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. A. R. Young. 1997. Chromophores in human skin. Phys. Med. Biol. 42, 5, 789.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Hyperspectral Modeling of Skin Appearance

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 3
      April 2015
      152 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2774971
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 May 2015
      • Accepted: 1 December 2014
      • Received: 1 October 2014
      Published in tog Volume 34, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader