skip to main content
10.1145/2746539.2746546acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

2-Server PIR with Sub-Polynomial Communication

Published:14 June 2015Publication History

ABSTRACT

A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the ith bit of an n-bit database replicated among two non-communicating servers, while not revealing any information about i to either server. In this work we construct a 2-server PIR scheme with total communication cost nO√(log log n)/(log n). This improves over current 2-server protocols which all require Ω(n1/3) communication. Our construction circumvents the n1/3 barrier of Razborov and Yekhanin which holds for the restricted model of bilinear group-based schemes (covering all previous 2-server schemes). The improvement comes from reducing the number of servers in existing protocols, based on Matching Vector Codes, from 3 or 4 servers to 2. This is achieved by viewing these protocols in an algebraic way (using polynomial interpolation) and extending them using partial derivatives.

References

  1. A. Ambainis. Upper bound on communication complexity of private information retrieval. In ICALP, pages 401--407, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Beimel and Y. Ishai. Information-theoretic private information retrieval: A unified construction. In ICALP, pages 912--926, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond. Breaking the o(n1/(2k-1)) barrier for information-theoretic private information retrieval. In FOCS, pages 261--270, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Bhowmick, Z. Dvir, and S. Lovett. New Bounds for Matching Vector Families. In Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing, STOC '13, pages 823--832, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. M. Chee, T. Feng, S. Ling, H. Wang, and L. F. Zhang. Query-efficient locally decodable codes of subexponential length. Computational Complexity, 22(1):159--189, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. J. ACM, 45(6):965--981, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Z. Dvir, P. Gopalan, and S. Yekhanin. Matching vector codes. In FOCS, pages 705--714, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Z. Dvir and G. Hu. Matching-vector families and LDCs over large modulo. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (RANDOM-APPROX), volume 8096, pages 513--526. Springer Berlin Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. K. Efremenko. 3-query locally decodable codes of subexponential length. In STOC, pages 39--44, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W. Gararch. A webpage on private information retrieval. https://www.cs.umd.edu/gasarch/TOPICS/pir/pir.html.Google ScholarGoogle Scholar
  11. W. I. Gasarch. A survey on private information retrieval (column: Computational complexity). Bulletin of the EATCS, 82:72--107, 2004.Google ScholarGoogle Scholar
  12. V. Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica, 20:2000, 1999.Google ScholarGoogle Scholar
  13. B. Hurley and T. Hurley. Group ring cryptography. CoRR, abs/1104.1724, 2011.Google ScholarGoogle Scholar
  14. T. Itoh and Y. Suzuki. Improved constructions for query-efficient locally decodable codes of subexponential length. IEICE Transactions, 93-D(2):263--270, 2010.Google ScholarGoogle Scholar
  15. D. Kahrobaei, C. Koupparis, and V. Shpilrain. Public key exchange using matrices over group rings. Groups-Complexity-Cryptology, 5(1):97--115, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In 32nd ACM Symposium on Theory of Computing (STOC), pages 80--86, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum argument. In STOC, pages 106--115, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Lipmaa. A webpage on oblivious transfer or private information retrieval. http://www.cs.ut.ee/lipmaa/crypto/link/protocols/oblivious.php.Google ScholarGoogle Scholar
  19. B. R. McDonald. Linear Algebra Over Commutative Rings. Pure and Applied Mathematics#87. Marcel Dekker, New York, 1984.Google ScholarGoogle Scholar
  20. R. Ostrovsky and W. E. S. III. A survey of single database PIR: techniques and applications. IACR Cryptology ePrint Archive, 2007:59, 2007.Google ScholarGoogle Scholar
  21. A. A. Razborov and S. Yekhanin. An Ω(n1/3) lower bound for bilinear group based private information retrieval. In FOCS, pages 739--748, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Wehner and R. de Wolf. Improved lower bounds for locally decodable codes and private information retrieval. In ICALP, pages 1424--1436, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. P. Woodruff and S. Yekhanin. A geometric approach to information-theoretic private information retrieval. In IEEE Conference on Computational Complexity, pages 275--284, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM, 55(1), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer Science, 6(3):139--255, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 2-Server PIR with Sub-Polynomial Communication

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '15: Proceedings of the forty-seventh annual ACM symposium on Theory of Computing
      June 2015
      916 pages
      ISBN:9781450335362
      DOI:10.1145/2746539

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 June 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '15 Paper Acceptance Rate93of347submissions,27%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader