skip to main content
10.1145/2746539.2746561acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices

Published:14 June 2015Publication History

ABSTRACT

Super-resolution is a fundamental task in imaging, where the goal is to extract fine-grained structure from coarse-grained measurements. Here we are interested in a popular mathematical abstraction of this problem that has been widely studied in the statistics, signal processing and machine learning communities. We exactly resolve the threshold at which noisy super-resolution is possible. In particular, we establish a sharp phase transition for the relationship between the cutoff frequency (m) and the separation (Δ). If m > 1/Δ + 1, our estimator converges to the true values at an inverse polynomial rate in terms of the magnitude of the noise. And when m < (1-ε) /Δ no estimator can distinguish between a particular pair of Δ-separated signals even if the magnitude of the noise is exponentially small. Our results involve making novel connections between extremal functions and the spectral properties of Vandermonde matrices. We establish a sharp phase transition for their condition number which in turn allows us to give the first noise tolerance bounds for the matrix pencil method. Moreover we show that our methods can be interpreted as giving preconditioners for Vandermonde matrices, and we use this observation to design faster algorithms for super-resolution. We believe that these ideas may have other applications in designing faster algorithms for other basic tasks in signal processing.

References

  1. M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, pages 103--112, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Beurling. Interpolation for an interval on R1. (Mittag-Leffler Lectures on Harmonic Analysis) Collected Works of Arne Buerling: Volume 2, Harmonic Analysis, pages 351--359, 1989.Google ScholarGoogle Scholar
  3. B. Bhaskar, G. Tang and B. Recht. Compressed sensing off the grid. arXiv:1207.6053, 2012.Google ScholarGoogle Scholar
  4. A. Bhaskara, M. Charikar, A. Moitra and A. Vijayaraghavan. Smoothed analysis of tensor decompositions. In STOC, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Candes and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Comm. of Pure and Applied Math., to appear.Google ScholarGoogle Scholar
  6. E. Candes and C. Fernandez-Granda. Super-resolution from noisy data. J. of Fourier Analysis and Applications, pages 1229--1254, 2013.Google ScholarGoogle Scholar
  7. E. Candes, J. Romberg and T. Tao. Robust uncertainty principles: exat signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, pages 489--509, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. on Information Theory, 51(12):4203--4215, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. V. Chandrasekaran, B. Recht, P. Parrilo and A. Willsky. The convex geometry of linear inverse problems. Foundations of Computational Mathematics, pages 805--849, 2012.Google ScholarGoogle Scholar
  10. E. Cheney. Introduction to Approximation Theory. American Mathematical Society, 2000.Google ScholarGoogle Scholar
  11. D. Donoho. Superresolution via sparsity constraints. SIAM Journal on Mathematical Analysis, pages 1309--1331, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Donoho and B. Logan. Signal recovery and the large sieve inequality. SIAM Journal of Applied Math, pass 577--591, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Donoho and P. Stark. Uncertainty principles and signal recovery. In SIAM J. on Appl. Math, pages 906--931, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. G. R. de Prony. Essay experimental et analytique: sur les lois de la dilatabilite de fluides elastique et sur celles de la force expansive de la vapeur de l'alcool, a differentes temperatures. Journal de l'ecole Polytechnique, pages 24--76, 1795.Google ScholarGoogle Scholar
  15. K. Do Ba, P. Indyk, E. Price and D. Woodruff. Lower bounds for sparse recovery. In SODA, pages 1190--1197, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Elad. Sparse and Redundant Representations. Springer, 2010. Google ScholarGoogle ScholarCross RefCross Ref
  17. C. Fernandez-Granda. Support detection in super-resolution. International Conference on Sampling Theory and Appl., pages 145--148, 2013.Google ScholarGoogle Scholar
  18. A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan and M. Strauss. Near optimal sparse Fourier representations via sampling. In STOC, pages 152--161, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Gilbert, M. Muthukrishnan and M. Strauss. Improved time bounds for near-optimal sparse Fourier representations. SPIE 5914, Wavelets XI, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  20. N. Goyal, S. Vempala and Y. Xiao. Fourier PCA. In STOC, pages 584--593, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Hassanieh, P. Indyk, D. Kitabi and E. Price. Nearly optimal sparse Fourier transform. In STOC, pages 563--578, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. Hua and T. Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. on Acoustics, Speech and Signal Processing, pages 814--824, 1990.Google ScholarGoogle Scholar
  24. A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two gaussians. In STOC, pages 553--562, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. W. Liao and A. Fannjiang. MUSIC for single-snapshot spectral estimation: stability and super-resolution. arXiv:1404.1484, 2014.Google ScholarGoogle Scholar
  26. A. Moitra and M. Saks. A polynomial time algorithm for lossy population recovery. In FOCS, pages 110--116, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Montgomery. Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. American Mathematical Society, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Moitra and G. Valiant. Setting the polynomial learnability of mixtures of gaussians. In FOCS, pages 93--102, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Montgomery and R. Vaughan. Hilbert's inequality. Journal of the London Math. Society, pages 43--81, 1974.Google ScholarGoogle Scholar
  30. S. Park, M. Park and M. Kang. Super-resolution image reconstruction: a technical overview. Signal Processing Magazine, pages 21--36, 2003.Google ScholarGoogle Scholar
  31. V. Pisarenko. The retrieval of harmonics from a covariance function. Geophysical Journal of the Royal Astronomical Society, pages 347--366, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  32. The Royal Swedish Academy of Sciences. The Nobel Prize in Chemistry 2014.\newline http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.htmlGoogle ScholarGoogle Scholar
  33. A. Selberg. Collected Papers. Springer-Verlag, 1991.Google ScholarGoogle Scholar
  34. D. Slepian and H. Pollack. Prolate spheroidal wave functions, Fourier analysis and uncertainty -- I, II, III, IV, V Bell System Technical Journal, pages 43--84, 1961, pages 1295--1336, 1962, pages 3009--3058, 1964 and pages 1371--1430, 1978.Google ScholarGoogle Scholar
  35. G. Stewart. Gershgorin theory for the generalized eigenvalue problem Ax = lambda Bx. Mathematics of Computation, pages 600--606, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  36. G. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press Inc., 1990.Google ScholarGoogle Scholar
  37. P. Stoica. List of references on spectral line analysis. Signal Processing, pages 329--340, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Tang , B. Bhaskar, and B. Recht. Sparse recovery over continuous dictionaries: Just discretize. Asilomar Conference on Signals, Systems and Computers, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Timan. Theory of Approximation of Functions of a Real Variable. Pergamon Press-Macmillan, 1963.Google ScholarGoogle Scholar
  40. J. Vaaler. Some extremal functions in Fourier analysis. Bulletin of the American Mathematical Soc., pages 183--216, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. Zygmund. Trigonometric Series. Cambridge University Press, 1968.Google ScholarGoogle Scholar

Index Terms

  1. Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '15: Proceedings of the forty-seventh annual ACM symposium on Theory of Computing
      June 2015
      916 pages
      ISBN:9781450335362
      DOI:10.1145/2746539

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 June 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '15 Paper Acceptance Rate93of347submissions,27%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader