skip to main content
research-article

Convolutional wasserstein distances: efficient optimal transportation on geometric domains

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

This paper introduces a new class of algorithms for optimization problems involving optimal transportation over geometric domains. Our main contribution is to show that optimal transportation can be made tractable over large domains used in graphics, such as images and triangle meshes, improving performance by orders of magnitude compared to previous work. To this end, we approximate optimal transportation distances using entropic regularization. The resulting objective contains a geodesic distance-based kernel that can be approximated with the heat kernel. This approach leads to simple iterative numerical schemes with linear convergence, in which each iteration only requires Gaussian convolution or the solution of a sparse, pre-factored linear system. We demonstrate the versatility and efficiency of our method on tasks including reflectance interpolation, color transfer, and geometry processing.

Skip Supplemental Material Section

Supplemental Material

a66.mp4

mp4

17.3 MB

References

  1. Agueh, M., and Carlier, G. 2011. Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 2, 904--924.Google ScholarGoogle ScholarCross RefCross Ref
  2. Ashikhmin, M., and Shirley, P. 2000. An anisotropic Phong BRDF model. J. of Graph. Tools 5, 2, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Aubry, M., Schlickewei, U., and Cremers, D. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. ICCV Workshops, 1626--1633.Google ScholarGoogle Scholar
  4. Benamou, J.-D., and Brenier, Y. 2000. A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84, 3, 375--393.Google ScholarGoogle ScholarCross RefCross Ref
  5. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. 2015. Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comp., to appear.Google ScholarGoogle Scholar
  6. Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. In Proc. SIGGRAPH, vol. 11, 192--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using Lagrangian mass transport. ACM Trans. Graph. 30, 6 (Dec.), 158:1--158:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. 2014. Sliced and Radon Wasserstein barycenters of measures. J. Math. Imaging and Vision, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bregman, L. 1967. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. and Math. Physics 7, 3, 200--217.Google ScholarGoogle ScholarCross RefCross Ref
  10. Burkard, R., and Çela, E. 1999. Linear assignment problems and extensions. Handbook of Combinatorial Optimization: Supplement 1, 75.Google ScholarGoogle ScholarCross RefCross Ref
  11. Burkard, R., Dell'Amico, M., and Martello, S. 2009. Assignment Problems. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Carlier, G., Oberman, A., and Oudet, E. 2014. Numerical methods for matching for teams and Wasserstein barycenters. Preprint, Ceremade.Google ScholarGoogle Scholar
  13. Cover, T., and Thomas, J. 2006. Elements of Information Theory. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (Oct.), 152:1--152:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cuturi, M., and Doucet, A. 2014. Fast computation of Wasserstein barycenters. In Proc. ICML, vol. 32.Google ScholarGoogle Scholar
  16. Cuturi, M. 2013. Sinkhorn distances: Lightspeed computation of optimal transportation. In Proc. NIPS, vol. 26. 2292--2300.Google ScholarGoogle Scholar
  17. Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. de Goes, F., Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. In Computer Graph. Forum, vol. 30, 1593--1602.Google ScholarGoogle ScholarCross RefCross Ref
  19. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6 (Nov.), 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. de Goes, F., Memari, P., Mullen, P., and Desbrun, M. 2014. Weighted triangulations for geometry processing. ACM Trans. Graph. 33, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Delon, J. 2006. Movie and video scale-time equalization application to flicker reduction. IEEE Trans. on Image Proc. 15, 1, 241--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Deming, W. E., and Stephan, F. F. 1940. On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Annals Math. Stat. 11, 4, 427--444.Google ScholarGoogle ScholarCross RefCross Ref
  23. Deriche, R. 1993. Recursively implementing the Gaussian and its derivatives. Tech. Rep. RR-1893.Google ScholarGoogle Scholar
  24. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Escalante, R., and Raydan, M. 2011. Alternating Projection Methods. Fundamentals of Algorithms. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F. 2014. Regularized discrete optimal transport. SIAM J. Imaging Sci. 7, 3, 1853--1882.Google ScholarGoogle ScholarCross RefCross Ref
  27. Franklin, J., and Lorenz, J. 1989. On the scaling of multidimensional matrices. Linear Algebra and its Applications 114, 717--735.Google ScholarGoogle Scholar
  28. Johnson, D. B. 1977. Efficient algorithms for shortest paths in sparse networks. J. ACM 24, 1 (Jan.), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3 (July), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kantorovich, L. 1942. On the transfer of masses (in Russian). Doklady Akademii Nauk 37, 2, 227--229.Google ScholarGoogle Scholar
  31. Kim, Y.-H., and Pass, B. 2013. Multi-marginal optimal transport on Riemannian manifolds. arXiv:1303.6251.Google ScholarGoogle Scholar
  32. Knight, P. 2008. The Sinkhorn--Knopp algorithm: Convergence and applications. SIAM J. on Matrix Anal. and Applications 30, 1, 261--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Léonard, C. 2012. From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal. 262, 4, 1879--1920.Google ScholarGoogle ScholarCross RefCross Ref
  34. Lipman, Y., and Daubechies, I. 2011. Conformal Wasserstein distances: Comparing surfaces in polynomial time. Adv. Math. 227, 3, 1047--1077.Google ScholarGoogle ScholarCross RefCross Ref
  35. MacNeal, R. 1949. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis, Caltech.Google ScholarGoogle Scholar
  36. Malliavin, P., and Stroock, D. W. 1996. Short time behavior of the heat kernel and its logarithmic derivatives. J. Differential Geom. 44, 3, 550--570.Google ScholarGoogle ScholarCross RefCross Ref
  37. McCann, R. J. 1997. A convexity principle for interacting gases. Adv. Math. 128, 1, 153--179.Google ScholarGoogle ScholarCross RefCross Ref
  38. Mérigot, Q. 2011. A multiscale approach to optimal transport. Comp. Graph. Forum 30, 5, 1583--1592.Google ScholarGoogle ScholarCross RefCross Ref
  39. Mosek ApS, 2014. Mosek version 7. https://mosek.com.Google ScholarGoogle Scholar
  40. Papadakis, N., Provenzi, E., and Caselles, V. 2011. A variational model for histogram transfer of color images. IEEE Trans. Image Proc. 20, 6, 1682--1695. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation. Morgan Kaufmann, July. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Pitié, F., Kokaram, A. C., and Dahyot, R. 2007. Automated colour grading using colour distribution transfer. Comp. Vision and Image Understanding 107 (July), 123--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vision 40, 2 (Nov.), 99--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Schwartzburg, Y., Testuz, R., Tagliasacchi, A., and Pauly, M. 2014. High-contrast computational caustic design. ACM Trans. Graph. 33, 4 (July), 74:1--74:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sinkhorn, R. 1964. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Math. Stat. 35, 2, 876--879.Google ScholarGoogle ScholarCross RefCross Ref
  46. Sinkhorn, R. 1967. Diagonal equivalence to matrices with prescribed row and column sums. American Math. Monthly 74, 4, 402--405.Google ScholarGoogle ScholarCross RefCross Ref
  47. Solomon, J., Nguyen, A., Butscher, A., Ben-Chen, M., and Guibas, L. 2012. Soft maps between surfaces. Comp. Graph. Forum 31, 5 (Aug.), 1617--1626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Solomon, J., Guibas, L., and Butscher, A. 2013. Dirichlet energy for analysis and synthesis of soft maps. Comp. Graph. Forum 32, 5, 197--206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. 2014. Earth mover's distances on discrete surfaces. ACM Trans. Graph. 33, 4 (July), 67:1--67:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Solomon, J., Rustamov, R., Leonidas, G., and Butscher, A. 2014. Wasserstein propagation for semi-supervised learning. In Proc. ICML, 306--314.Google ScholarGoogle Scholar
  51. Varadhan, S. R. S. 1967. On the behavior of the fundamental solution of the heat equation with variable coefficients. Comm. on Pure and Applied Math. 20, 2, 431--455.Google ScholarGoogle ScholarCross RefCross Ref
  52. Villani, C. 2003. Topics in Optimal Transportation. Graduate Studies in Mathematics. AMS.Google ScholarGoogle Scholar
  53. Zhao, X., Su, Z., Gu, X. D., Kaufman, A., Sun, J., Gao, J., and Luo, F. 2013. Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. and Comp. Graphics 19, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Zhu, J.-Y., Lee, Y. J., and Efros, A. A. 2014. AverageExplorer: Interactive exploration and alignment of visual data collections. ACM Trans. Graph. 33, 4 (July), 160:1--160:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Convolutional wasserstein distances: efficient optimal transportation on geometric domains

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader