skip to main content
10.1145/2858036.2858580acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

FingerIO: Using Active Sonar for Fine-Grained Finger Tracking

Published:07 May 2016Publication History

ABSTRACT

We present fingerIO, a novel fine-grained finger tracking solution for around-device interaction. FingerIO does not require instrumenting the finger with sensors and works even in the presence of occlusions between the finger and the device. We achieve this by transforming the device into an active sonar system that transmits inaudible sound signals and tracks the echoes of the finger at its microphones. To achieve sub-centimeter level tracking accuracies, we present an innovative approach that use a modulation technique commonly used in wireless communication called Orthogonal Frequency Division Multiplexing (OFDM). Our evaluation shows that fingerIO can achieve 2-D finger tracking with an average accuracy of 8 mm using the in-built microphones and speaker of a Samsung Galaxy S4. It also tracks subtle finger motion around the device, even when the phone is in the pocket. Finally, we prototype a smart watch form-factor fingerIO device and show that it can extend the interaction space to a 0.5×0.25 m2 region on either side of the device and work even when it is fully occluded from the finger.

Skip Supplemental Material Section

Supplemental Material

p1515-nandakumar.mp4

mp4

202.6 MB

References

  1. Adafruit. https://www.adafruit.com/products/1063.Google ScholarGoogle Scholar
  2. Apple Watch - Guided Tour: Phone Calls. https://www.youtube.com/watch?v=Zj5KisMVv8.Google ScholarGoogle Scholar
  3. Chirp Microsystems. http://www.chirpmicro.com/technology.html.Google ScholarGoogle Scholar
  4. A MimioTeach Interaction Whiteboard. http://www.mimio.com/en-NA/Products/MimioTeach-Interactive-Whiteboard.aspx.Google ScholarGoogle Scholar
  5. Adib, F., Kabelac, Z., Katabi, D., and Miller, R. C. 3D Tracking via Body Radio Reflections. NSDI 2014, 317--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Aumi, M. T. I., Gupta, S., Goel, M., Larson, E., and Patel, S. DopLink: Using the Doppler Effect for Multi-device Interaction. UbiComp 2013, 583--586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Boleskei, H. Principles of MIMO-OFDM wireless systems. 2004.Google ScholarGoogle Scholar
  8. Braun, A., Krepp, S., and Kuijper, A. Acoustic Tracking of Hand Activities on Surfaces. WOAR 2015, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Butler, A., Izadi, S., and Hodges, S. SideSight: Multi-"Touch" Interaction Around Small Devices. UIST 2008, 201--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chan, L., Liang, R.-H., Tsai, M.-C., Cheng, K.-Y., Su, C.-H., Chen, M. Y., Cheng, W.-H., and Chen, B.-Y. FingerPad: Private and Subtle Interaction Using Fingertips. UIST 2013, 255--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chen, K.-Y., Ashbrook, D., Goel, M., Lee, S.-H., and Patel, S. AirLink: Sharing Files Between Multiple Devices Using In-air Gestures. UbiComp 2014, 565--569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, K.-Y., Lyons, K., White, S., and Patel, S. uTrack: 3D Input Using Two Magnetic Sensors. UIST 2013, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goel, M., Lee, B., Islam Aumi, M. T., Patel, S., Borriello, G., Hibino, S., and Begole, B. Surface Link: Using Inertial and Acoustic Sensing to Enable Multi-device Interaction on a Surface. CHI 2014, 1387--1396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Google. Project Soli. https://www.youtube.com/watch?v=_Zj5KisMVv8.Google ScholarGoogle Scholar
  15. Gupta, S., Morris, D., Patel, S., and Tan, D. SoundWave: Using the Doppler Effect to Sense Gestures. CHI 2012, 1911--1914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Heiskala, J., and Terry, J. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams publishing, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Huang, W., Xiong, Y., Li, X.-Y., Lin, H., Mao, X., Yang, P., and Liu, Y. Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones. INFOCOM 2014, 370--278.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kellogg, B., Talla, V., and Gollakota, S. Bringing Gesture Recognition to All Devices. NSDI 2014, 303--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Khyam, M., Alam, M., Lambert, A., Benson, C., and Pickering, M. High precision multiple ultrasonic transducer positioning using a robust optimization approach. ISSPIT 2013, 192--197.Google ScholarGoogle ScholarCross RefCross Ref
  20. Khyam, M., Alam, M., and Pickering, M. OFDM based low-complexity time of arrival estimation in active sonar. OCEANS 2014, 1--5.Google ScholarGoogle Scholar
  21. Kienzle, W., and Hinckley, K. LightRing: Always-available 2D Input on Any Surface. UIST 2014, 157--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J., Oikonomidis, I., and Olivier, P. Digits: Freehand 3D Interactions Anywhere Using a Wrist-worn Gloveless Sensor. UIST 2012, 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kratz, S., and Rohs, M. HoverFlow: Expanding the Design Space of Around-device Interaction. MobileHCI 2009, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, J., Wang, Y., Kar, G., Chen, Y., Yang, J., and Gruteser, M. Snooping Keystrokes with Mm-level Audio Ranging on a Single Phone. MobiCom 2015, 142--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. MacNeish. The Intersections of Two Conic Sections with a Common Focus. The American Mathematical Monthly 28, 6/7, 260--262.Google ScholarGoogle Scholar
  26. Nandakumar, R., Chinatalapudi, K., Padmanaban, V., and Venkatesan, R. Dhwani: Secure Peer-to-Peer Acoustic NFC. Sigcomm 2013 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nandakumar, R., Gollakota, S., and Watson, N. Contactless Sleep Apnea Detection on Smartphones. Mobisys 2015, 45--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ogata, M., Sugiura, Y., Osawa, H., and Imai, M. iRing: Intelligent Ring Using Infrared Reflection. UIST 2012, 131--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. The Cricket Location-support System. Mobicom 2000, 32--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Proakis, J., and Salehi, M. Digital Communications. McGraw-hill, 2007.Google ScholarGoogle Scholar
  31. Przybyla, R., Tang, H.-Y., Guedes, A., Shelton, S., Horsley, D., and Boser, B. 3D Ultrasonic Rangefinder on a Chip. IEEE Journal of Solid-State Circuits 2015, 320--334.Google ScholarGoogle Scholar
  32. Pu, Q., Gupta, S., Gollakota, S., and Patel, S. Whole-home Gesture Recognition Using Wireless Signals. Mobicom 2013, 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Reju, V., Khong, A., and Sulaiman, A. Localization of Taps on Solid Surfaces for Human-Computer Touch Interfaces. IEEE Trans. on Multimedia 2013, 1365--1376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Saponas, T. S., Harrison, C., and Benko, H. PocketTouch: Through-fabric Capacitive Touch Input. UIST 2011, 303--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Song, J., Soros, G., Pece, F., Fanello, S. R., Izadi, S., Keskin, C., and Hilliges, O. In-air Gestures Around Unmodified Mobile Devices. UIST 2014, 319--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sun, L., Sen, S., Koutsonikolas, D., and Kim, K.-H. WiDraw: Enabling Hands-free Drawing in the Air on Commodity WiFi Devices. Mobicom 2015, 77--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sun, Z., Purohit, A., Bose, R., and Zhang, P. Spartacus: Spatially-aware Interaction for Mobile Devices Through Energy-efficient Audio Sensing. MobiSys 2013, 263--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, J., Zhao, K., Zhang, X., and Peng, C. Ubiquitous Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-grained Keystroke Localization. MobiSys 2014, 14--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Xiao, R., Lew, G., Marsanico, J., Hariharan, D., Hudson, S., and Harrison, C. Toffee: Enabling Ad Hoc, Around-device Interaction with Acoustic Time-of-arrival Correlation. MobileHCI 2014, 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yang, X.-D., Grossman, T., Wigdor, D., and Fitzmaurice, G. Magic Finger: Always-available Input Through Finger Instrumentation. UIST 2012, 147--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yang, X.-D., Hasan, K., Bruce, N., and Irani, P. Surround-see: Enabling Peripheral Vision on Smartphones During Active Use. UIST 2013, 291--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yun, S., Chen, Y.-C., and Qiu, L. Turning a Mobile Device into a Mouse in the Air. Mobisys 2015, 15--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zhao, C., Chen, K.-Y., Aumi, M. T. I., Patel, S., and Reynolds, M. S. SideSwipe: Detecting In-air Gestures Around Mobile Devices Using Actual GSM Signal. UIST 2014, 527--534. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. FingerIO: Using Active Sonar for Fine-Grained Finger Tracking

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
      May 2016
      6108 pages
      ISBN:9781450333627
      DOI:10.1145/2858036

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 May 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '16 Paper Acceptance Rate565of2,435submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader