skip to main content
research-article
Public Access

Mapping virtual and physical reality

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Real walking offers higher immersive presence for virtual reality (VR) applications than alternative locomotive means such as walking-in-place and external control gadgets, but needs to take into consideration different room sizes, wall shapes, and surrounding objects in the virtual and real worlds. Despite perceptual study of impossible spaces and redirected walking, there are no general methods to match a given pair of virtual and real scenes.

We propose a system to match a given pair of virtual and physical worlds for immersive VR navigation. We first compute a planar map between the virtual and physical floor plans that minimizes angular and distal distortions while conforming to the virtual environment goals and physical environment constraints. Our key idea is to design maps that are globally surjective to allow proper folding of large virtual scenes into smaller real scenes but locally injective to avoid locomotion ambiguity and intersecting virtual objects. From these maps we derive altered rendering to guide user navigation within the physical environment while retaining visual fidelity to the virtual environment. Our key idea is to properly warp the virtual world appearance into real world geometry with sufficient quality and performance. We evaluate our method through a formative user study, and demonstrate applications in gaming, architecture walkthrough, and medical imaging.

Skip Supplemental Material Section

Supplemental Material

a64.mp4

mp4

321.4 MB

References

  1. Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., and Sagastizábal, C. A. 2006. Numerical Optimization: Theoretical and Practical Aspects (Universitext). Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bouchard, S., Robillard, G., and Renaud, P. 2007. Revising the factor structure of the simulator sickness questionnaire. Annual Review of CyberTherapy and Telemedicine 5, 128--137.Google ScholarGoogle Scholar
  3. Bowman, D. A., Gabbard, J. L., and Hix, D. 2002. A survey of usability evaluation in virtual environments: Classification and comparison of methods. Presence: Teleoper. Virtual Environ. 11, 4 (Aug.), 404--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bruder, G., Lubas, P., and Steinicke, F. 2015. Cognitive resource demands of redirected walking. IEEE Transactions on Visualization and Computer Graphics 21, 4 (April), 539--544.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, R., and Weber, O. 2015. Bounded distortion harmonic mappings in the plane. ACM Trans. Graph. 34, 4 (July), 73:1--73:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cheng, L.-P., Roumen, T., Rantzsch, H., Köhler, S., Schmidt, P., Kovacs, R., Jasper, J., Kemper, J., and Baudisch, P. 2015. Turkdeck: Physical virtual reality based on people. In UIST '15, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Choi, S., Zhou, Q.-Y., and Koltun, V. 2015. Robust reconstruction of indoor scenes. In CVPR '15, 5556--5565.Google ScholarGoogle Scholar
  8. Crassin, C., McGuire, M., Fatahalian, K., and Lefohn, A. 2015. Aggregate G-buffer anti-aliasing. In I3D '15, 109--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cui, J., Rosen, P., Popescu, V., and Hoffmann, C. 2010. A curved ray camera for handling occlusions through continuous multiperspective visualization. IEEE Transactions on Visualization and Computer Graphics 16, 6 (Nov.), 1235--1242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Debevec, P. E., Taylor, C. J., and Malik, J. 1996. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In SIGGRAPH '96, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Febretti, A., Nishimoto, A., Mateevitsi, V., Renambot, L., Johnson, A., and Leigh, J. 2014. Omegalib: A multi-view application framework for hybrid reality display environments. In Virtual Reality (VR), 2014 IEEE, 9--14.Google ScholarGoogle Scholar
  12. Fu, X.-M., Liu, Y., and Guo, B. 2015. Computing locally injective mappings by advanced mips. ACM Trans. Graph. 34, 4 (July), 71:1--71:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gal, R., Sorkine, O., and Cohen-Or, D. 2006. Feature-aware texturing. In EGSR '06, 297--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gray, A. 1996. Modern Differential Geometry of Curves and Surfaces with Mathematica, 1st ed. CRC Press, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hodgson, E., Bachmann, E., and Waller, D. 2008. Redirected walking to explore virtual environments: Assessing the potential for spatial interference. ACM Trans. Appl. Percept. 8, 4 (Dec.), 22:1--22:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hong, L., Muraki, S., Kaufman, A., Bartz, D., and He, T. 1997. Virtual voyage: Interactive navigation in the human colon. In SIGGRAPH '97, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Huang, F.-C., Chen, K., and Wetzstein, G. 2015. The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. 34, 4 (July), 60:1--60:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Iwata, H., Yano, H., and Tomioka, H. 2006. Powered shoes. In SIGGRAPH '06 Emerging Technologies. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jang, Y., Noh, S.-T., Chang, H. J., Kim, T.-K., and Woo, W. 2015. 3d finger cape: Clicking action and position estimation under self-occlusions in egocentric viewpoint. IEEE Transactions on Visualization and Computer Graphics 21, 4 (April), 501--510.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. 1993. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology 3, 3, 203--220.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3 (July), 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, H., Trutoiu, L., Olszewski, K., Wei, L., Trutna, T., Hsieh, P.-L., Nicholls, A., and Ma, C. 2015. Facial performance sensing head-mounted display. ACM Trans. Graph. 34, 4 (July), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Maesen, S., Goorts, P., and Bekaert, P. 2013. Scalable optical tracking for navigating large virtual environments using spatially encoded markers. In VRST '13, 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. McMillan, Jr., L. 1997. An Image-based Approach to Three-dimensional Computer Graphics. PhD thesis. UMI Order No. GAX97-30561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nescher, T., Huang, Y.-Y., and Kunz, A. 2014. Planning redirection techniques for optimal free walking experience using model predictive control. In 3DUI '14, 111--118.Google ScholarGoogle Scholar
  26. Nilsson, N., Serafin, S., and Nordahl, R. 2014. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Transactions on Visualization and Computer Graphics 20, 4 (April), 569--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Popescu, V., Rosen, P., and Adamo-Villani, N. 2009. The graph camera. ACM Trans. Graph. 28, 5 (Dec.), 158:1--158:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Poranne, R., and Lipman, Y. 2014. Provably good planar mappings. ACM Trans. Graph. 33, 4, 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Razzaque, S., Kohn, Z., and Whitton, M. C. 2001. Redirected Walking. In Eurographics 2001 - Short Presentations, Eurographics Association.Google ScholarGoogle Scholar
  30. Razzaque, S., Swapp, D., Slater, M., Whitton, M. C., and Steed, A. 2002. Redirected walking in place. In EGVE '02, 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rudin, W. 1976. Principles of mathematical analysis, third ed. McGraw-Hill Book Co., New York. International Series in Pure and Applied Mathematics.Google ScholarGoogle Scholar
  32. Schild, J., LaViola, J., and Masuch, M. 2012. Understanding user experience in stereoscopic 3d games. In CHI '12, 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. In SGP '13, 125--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schwaiger, M., Thümmel, T., and Ulbrich, H. 2007. Cyberwalk: Implementation of a ball bearing platform for humans. In Human-Computer Interaction. Interaction Platforms and Techniques. Springer, 926--935. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Simeone, A. L., Velloso, E., and Gellersen, H. 2015. Substitutional reality: Using the physical environment to design virtual reality experiences. In CHI '15, 3307--3316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Souman, J. L., Giordano, P. R., Schwaiger, M., Frissen, I., Thümmel, T., Ulbrich, H., Luca, A. D., Bülthoff, H. H., and Ernst, M. O. 2008. Cyberwalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8, 4 (Dec.), 25:1--25:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., and Lappe, M. 2008. Analyses of human sensitivity to redirected walking. In VRST '08, 149--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Suma, E., Lipps, Z., Finkelstein, S., Krum, D., and Bolas, M. 2012. Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Transactions on Visualization and Computer Graphics 18, 4 (April), 555--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Turk, G., and O'Brien, J. F. 2005. Shape transformation using variational implicit functions. In SIGGRAPH '05 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Usoh, M., Arthur, K., Whitton, M. C., Bastos, R., Steed, A., Slater, M., and Brooks, Jr., F. P. 1999. Walking > walking-in-place > flying, in virtual environments. In SIGGRAPH '99, 359--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vasylevska, K., Kaufmann, H., Bolas, M., and Suma, E. 2013. Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In 3DUI '13, 39--42.Google ScholarGoogle Scholar
  42. Witmer, B. G., and Singer, M. J. 1998. Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoper. Virtual Environ. 7, 3 (June), 225--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wong, R., 2015. Vr startups: Stop trying to make virtual reality treadmills a thing. http://mashable.com/2015/06/20/virtual-reality-treadmills/.Google ScholarGoogle Scholar
  44. Yang, L., Tse, Y.-C., Sander, P. V., Lawrence, J., Nehab, D., Hoppe, H., and Wilkins, C. L. 2011. Image-based bidirectional scene reprojection. ACM Trans. Graph. 30, 6 (Dec.), 150:1--150:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhang, R., and Kuhl, S. A. 2013. Human sensitivity to dynamic rotation gains in head-mounted displays. In SAP '13, 71--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zmuda, M., Wonser, J., Bachmann, E., and Hodgson, E. 2013. Optimizing constrained-environment redirected walking instructions using search techniques. IEEE Transactions on Visualization and Computer Graphics 19, 11 (Nov), 1872--1884. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mapping virtual and physical reality

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader