skip to main content
research-article

Efficient dynamic skinning with low-rank helper bone controllers

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Dynamic skin deformation is vital for creating life-like characters, and its real-time computation is in great demand in interactive applications. We propose a practical method to synthesize plausible and dynamic skin deformation based on a helper bone rig. This method builds helper bone controllers for the deformations caused not only by skeleton poses but also secondary dynamics effects. We introduce a state-space model for a discrete time linear time-invariant system that efficiently maps the skeleton motion to the dynamic movement of the helper bones. Optimal transfer of nonlinear, complicated deformations, including the effect of soft-tissue dynamics, is obtained by learning the training sequence consisting of skeleton motions and corresponding skin deformations. Our approximation method for a dynamics model is highly accurate and efficient owing to its low-rank property obtained by a sparsity-oriented nuclear norm optimization. The resulting linear model is simple enough to easily implement in the existing workflows and graphics pipelines. We demonstrate the superior performance of our method compared to conventional dynamic skinning in terms of computational efficiency including LOD controls, stability in interactive controls, and flexible expression in deformations.

Skip Supplemental Material Section

Supplemental Material

a36.mp4

mp4

390.9 MB

References

  1. Andersen, M. S., Dahl, J., and Vandenberghe, L. CVXOPT: A python package for convex optimization. http://cvxopt.org.Google ScholarGoogle Scholar
  2. Angelidis, A., and Singh, K. 2007. Kinodynamic skinning using volume-preserving deformations. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007, 129--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2010. Stable spaces for real-time clothing. ACM Transactions on Graphics 29, 4, 106:1--106:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Fan, Y., Litven, J., and Pai, D. K. 2014. Active volumetric musculoskeletal systems. ACM Transactions on Graphics 33, 4, 152:1--152:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Transactions on Graphics 31, 4, 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R., and Markus. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2013, 165--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hsu, E., Pulli, K., and Popović, J. 2005. Style translation for human motion. ACM Transactions on Graphics 24, 3, 1082--1089. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. James, D. L., and Pai, D. K. 2002. Dyrt: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Transactions on Graphics 21, 3, 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kavan, L., and Sorkine, O. 2012. Elasticity-inspired deformers for character articulation. ACM Transactions on Graphics 31, 6, 196:1--196:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kavan, L., Collins, S., Zara, J., and O'Sullivan, C. 2007. Skinning with dual quaternions. In Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics 2007, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kim, J., and Kim, C.-H. 2011. Implementation and application of the real-time helper-joint system. In Game Developers Conference 2011.Google ScholarGoogle Scholar
  12. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: Real time large deformation character skinning in hardware. In Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2002, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Larimore, W. 1990. Canonical variate analysis in identification, filtering and adaptive control. In Proceedings of Control & Decision Conference, 596--604.Google ScholarGoogle ScholarCross RefCross Ref
  14. Le, B. H., and Deng, Z. 2012. Smooth skinning decomposition with rigid bones. ACM Transactions on Graphics 31, 6, 199:1--199:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Le, B. H., and Deng, Z. 2014. Robust and accurate skeletal rigging from mesh sequences. ACM Transactions on Graphics 33, 4, 84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of SIGGRAPH 2000, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013. Thin skin elastodynamics. ACM Transactions on Graphics 32, 4, 49:1--49:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, Z., and Vandenberghe, L. 2009. Interior-point method for nuclear norm approximation with application to system identification. SIAM Journal on Matrix Analysis and Application 31, 3, 1235--1256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, Z., Hansson, A., and Vandenberghe, L. 2013. Nuclear norm system identification with missing inputs and outputs. Systems & Control Letters 62, 8, 605--612.Google ScholarGoogle ScholarCross RefCross Ref
  20. Liu, Z. 2009. Structured Semidefinite Programs in System Identification and Control. PhD thesis, University of California, Los Angeles.Google ScholarGoogle Scholar
  21. Ljung, L. 1999. System Identification: Theory for the User. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Loper, M., and Black, N. M. M. J. 2014. Motion and shape capture from sparse markers. ACM Transactions on Graphics 33, 6, 220:1--220:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. 2015. SMPL: A skinned multi-person linear model. ACM Transactions on Graphics 34, 6, 248:1--248:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Proceedings on Graphics Interface '88, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mari, J., Stoica, P., and McKelvey, T. 2000. Vector ARMA estimation: a reliable subspace approach. IEEE Transaction on Signal Processing 48, 7, 2092--2104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Transactions on Graphics 22, 3, 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Moor, B. D., Marc Moonen and, L. V., and Vandewalle, J. 1988. A geometrical approach for the identification of state space models with singular value decomposition. In International Conference on Acoustics, Speech, and Signal Processing, vol. 4, 2244--2247.Google ScholarGoogle Scholar
  28. Mukai, T. 2015. Building helper bone rigs from examples. In Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games 2015, 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., and Theobalt, C. 2013. Capture and statistical modeling of arm-muscle deformations. Computer Graphics Forum 32, 2, 285--294.Google ScholarGoogle ScholarCross RefCross Ref
  30. Park, S. I., and Hodgins, J. K. 2008. Data-driven modeling of skin and muscle deformation. ACM Transactions on Graphics 27, 3, 96:1--96:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Parks, J. 2005. Helper joints: Advanced deformations on runtime characters. In Game Developers Conference 2005.Google ScholarGoogle Scholar
  32. Pons-Moll, G., Romero, J., Mahmood, N., and Black, M. J. 2015. Dyna: A model of dynamic human shape in motion. ACM Transactions on Graphics 33, 4, 120:1--120:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Recht, B., Fazel, M., and Parrilo, P. A. 2010. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52, 3, 471--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rumman, N. A., and Fratarcangeli, M. 2015. Position-based skinning for soft articulated characters. Computer Graphics Forum 34, 6, 240--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2008. Example-based dynamic skinning in real time. ACM Transactions on Graphics 27, 3, 29:1--29:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tibshirani, R. 2011. Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 3, 273--282.Google ScholarGoogle ScholarCross RefCross Ref
  37. Verhaegen, M. 1994. Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30, 1, 61--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Viberg, M. 1995. On subspace-based methods for the identification of linear time-invariant systems. Automatica 31, 12, 1835--1852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Transactions on Graphics 26, 3, 73:1--73:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xia, S., Wang, C., Chai, J., and Hodgins, J. 2015. Realtime style transfer for unlabeled heterogeneous human motion. ACM Transactions on Graphics 34, 4, 119:1--119:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient dynamic skinning with low-rank helper bone controllers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader