skip to main content
research-article

Wasserstein barycentric coordinates: histogram regression using optimal transport

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

This article defines a new way to perform intuitive and geometrically faithful regressions on histogram-valued data. It leverages the theory of optimal transport, and in particular the definition of Wasserstein barycenters, to introduce for the first time the notion of barycentric coordinates for histograms. These coordinates take into account the underlying geometry of the ground space on which the histograms are defined, and are thus particularly meaningful for applications in graphics to shapes, color or material modification. Beside this abstract construction, we propose a fast numerical optimization scheme to solve this backward problem (finding the barycentric coordinates of a given histogram) with a low computational overhead with respect to the forward problem (computing the barycenter). This scheme relies on a backward algorithmic differentiation of the Sinkhorn algorithm which is used to optimize the entropic regularization of Wasserstein barycenters. We showcase an illustrative set of applications of these Wasserstein coordinates to various problems in computer graphics: shape approximation, BRDF acquisition and color editing.

Skip Supplemental Material Section

Supplemental Material

a71.mp4

mp4

266.8 MB

References

  1. Agueh, M., and Carlier, G. 2011. Barycenters in the Wasserstein space. SIAM J. on Mathematical Analysis 43, 2.Google ScholarGoogle ScholarCross RefCross Ref
  2. Benamou, J.-D., and Brenier, Y. 2000. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84, 3, 375--393.Google ScholarGoogle ScholarCross RefCross Ref
  3. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, M., and Peyré, G. 2015. Iterative Bregman projections for regularized transportation problems. SIAM J. on Sci. Computing 2, 37.Google ScholarGoogle Scholar
  4. Bigot, J., and Klein, T. 2012. Consistent estimation of a population barycenter in the Wasserstein space. Preprint arXiv:1212.2562.Google ScholarGoogle Scholar
  5. Bigot, J., Gouet, R., Klein, T., and López, A. 2015. Geodesic PCA in the Wasserstein space by Convex PCA. Annales de l'Institut Henri Poincaré B: Probability and Statistics.Google ScholarGoogle Scholar
  6. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using lagrangian mass transport. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bonneel, N., Sunkavalli, K., Paris, S., and Pfister, H. 2013. Example-Based Video Color Grading. ACM Trans. Graph. (SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. 2015. Sliced and Radon Wasserstein barycenters of measures. J. of Mathematical Imaging and Vision 51, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brand, M., and Brand, M. 2003. Charting a manifold. In Adv. in Neural Information Proc. Sys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bregman, L. M. 1967. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR computational mathematics and mathematical physics 7, 3, 200--217.Google ScholarGoogle Scholar
  11. Burkard, R., Dell'Amico, M., and Martello, S. 2009. Assignment Problems. Society for Industrial and App. Math. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. (SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cuturi, M., and Doucet, A. 2014. Fast computation of Wasserstein barycenters. In Int. Conf. on Machine Learning (ICML).Google ScholarGoogle Scholar
  14. Cuturi, M. 2013. Sinkhorn distances: Lightspeed computation of optimal transport. In Adv. in Neural Information Proc. Sys.Google ScholarGoogle Scholar
  15. Deming, W. E., and Stephan, F. F. 1940. On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Annals Mathematical Statistics 11, 4.Google ScholarGoogle ScholarCross RefCross Ref
  16. Filip, J., and Vávra, R. 2014. Template-based sampling of anisotropic BRDFs. Computer Graphics Forum (PG) 33, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Haker, S., Zhu, L., Tannenbaum, A., and Angenent, S. Optimal mass transport for registration and warping. International Journal of Computer Vision 60, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kantorovich, L. 1942. On the transfer of masses (in russian). Doklady Akademii Nauk 37, 2, 227--229.Google ScholarGoogle Scholar
  19. Lewis, A. S., and Overton, M. L. 2013. Nonsmooth optimization via quasi-newton methods. Math. Programming 141.Google ScholarGoogle Scholar
  20. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. (SIGGRAPH) 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mérigot, Q. 2011. A multiscale approach to optimal transport. Computer Graphics Forum (SGP) 30, 5.Google ScholarGoogle Scholar
  22. Monge, G. 1781. Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences, 666--704.Google ScholarGoogle Scholar
  23. Neidinger, R. D. 2010. Introduction to automatic differentiation and MATLAB object-oriented programming. SIAM Rev. 52, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pitié, F., Kokaram, A., and Dahyot, R. 2007. Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rabin, J., and Papadakis, N. 2015. Convex color image segmentation with optimal transport distances. In Proc. SSVM'15.Google ScholarGoogle Scholar
  26. Rabin, J., Delon, J., and Gousseau, Y. 2010. Regularization of transportation maps for color and contrast transfer. In IEEE International Conference on Image Processing (ICIP).Google ScholarGoogle Scholar
  27. Rabin, J., Peyré, G., Delon, J., and Bernot, M. 2012. Wasserstein barycenter and its application to texture mixing. In Scale Space and Variational Methods in Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Reinhard, E., Ashikhmin, M., Gooch, B., and Shirley, P. 2001. Color transfer between images. IEEE Comput. Graph. Appl. 21, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rolet, A., Cuturi, M., and Peyré, G. 2016. Fast dictionary learning with a smoothed Wasserstein loss. In Proc. AISTATS'16.Google ScholarGoogle Scholar
  30. Rubner, Y., Tomasi, C., and Guibas, L. 1998. A metric for distributions with applications to image databases. In Computer Vision, 1998. Sixth International Conference on, 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rubner, Y., Tomasi, C., and Guibas, M. J. 2000. The earth mover's distance as a metric for image retrieval. International J. of Computer Vision 40, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Rustamov, R. M. 2010. Barycentric coordinates on surfaces. Computer Graphics Forum 5, 29.Google ScholarGoogle Scholar
  33. Sandler, R., and Lindenbaum, M. 2009. Nonnegative matrix factorization with earth mover's distance metric. In IEEE Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  34. Schmidt, M. W., van den Berg, E., Friedlander, M. P., and Murphy, K. P. 2009. Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm. In International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 5.Google ScholarGoogle Scholar
  35. Seguy, V., and Cuturi, M. 2015. Principal geodesic analysis for probability measures under the optimal transport metric. In Adv. in Neural Information Proc. Sys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sinkhorn, R. 1964. A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statist. 35.Google ScholarGoogle Scholar
  37. Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. 2014. Earth mover's distances on discrete surfaces. ACM Trans. Graph. (SIGGRAPH) 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. 2014. Wasserstein propagation for semi-supervised learning. In Int. Conf. on Machine Learning (ICML).Google ScholarGoogle Scholar
  39. Solomon, J., de Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., and Guibas, L. 2015. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans. Graph. (SIGGRAPH) 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Srivastava, S., Cevher, V., Tran-Dinh, Q., and Dunson, D. B. 2015. Wasp: Scalable bayes via barycenters of subset posteriors. In International Conference on Artificial Intelligence and Statistics.Google ScholarGoogle Scholar
  41. Villani, C. 2003. Topics in optimal transportation. American Mathematical Soc.Google ScholarGoogle Scholar
  42. Villani, C. 2008. Optimal transport: old and new, vol. 338.Google ScholarGoogle Scholar
  43. Wills, J., Agarwal, S., Kriegman, D., and Belongie, S. 2009. Toward a perceptual space for gloss. ACM Trans. Graph. 28, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Wasserstein barycentric coordinates: histogram regression using optimal transport

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 4
          July 2016
          1396 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2897824
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 July 2016
          Published in tog Volume 35, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader