skip to main content
research-article
Open Access

Soli: ubiquitous gesture sensing with millimeter wave radar

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

This paper presents Soli, a new, robust, high-resolution, low-power, miniature gesture sensing technology for human-computer interaction based on millimeter-wave radar. We describe a new approach to developing a radar-based sensor optimized for human-computer interaction, building the sensor architecture from the ground up with the inclusion of radar design principles, high temporal resolution gesture tracking, a hardware abstraction layer (HAL), a solid-state radar chip and system architecture, interaction models and gesture vocabularies, and gesture recognition. We demonstrate that Soli can be used for robust gesture recognition and can track gestures with sub-millimeter accuracy, running at over 10,000 frames per second on embedded hardware.

Skip Supplemental Material Section

Supplemental Material

a142.mp4

mp4

377.4 MB

References

  1. Axelsson, S. R. 2004. Noise radar using random phase and frequency modulation. IEEE Transactions on Geoscience and Remote Sensing 42, 11, 2370--2384.Google ScholarGoogle ScholarCross RefCross Ref
  2. Azevedo, S., and McEwan, T. 1996. Micropower impulse radar. Science and Technology Review, 17--29.Google ScholarGoogle Scholar
  3. Barnes, S. B. 1997. Douglas Carl Engelbart: Developing the underlying concepts for contemporary computing. IEEE Annals of the History of Computing 19, 3, 16--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baum, C. E., Rothwell, E. J., Chen, K.-M., and Nyquist, D. P. 1991. The singularity expansion method and its application to target identification. Proceedings of the IEEE 79, 10, 1481--1492.Google ScholarGoogle ScholarCross RefCross Ref
  5. Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H., and Rosenberger, C. 2008. Review and evaluation of commonly-implemented background subtraction algorithms. In ICPR 2008.Google ScholarGoogle Scholar
  6. Bishop, C. M. 2006. Pattern recognition. Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bolt, R. a. 1980. Put-that-there. SIGGRAPH '80, 262--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Breiman, L. 2001. Random forests. Machine Learning 45, 1, 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brookner, E. 1985. Phased-array radars. Scientific American 252, 2, 94--102.Google ScholarGoogle ScholarCross RefCross Ref
  10. Brown, L. 1999. A Radar History of World War II: Technical and Military Imperatives. Institute of Physics Publishing.Google ScholarGoogle Scholar
  11. Brunnbauer, M., Meyer, T., Ofner, G., Mueller, K., and Hagen, R. 2008. Embedded wafer level ball grid array (eWLB). In IEMT 2008, IEEE, 1--6.Google ScholarGoogle Scholar
  12. Card, S., Moran, T., and Newell, A. 1983. The Psychology of Human-Computer Interaction. L. Erlbaum Associates. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chan, L., Chen, C.-h. H. Y.-l., and Yang, S. 2015. Cyclops: Wearable and single-piece full-body gesture input devices. In CHI 2015, ACM, 3001--3009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Comscore Inc. 2014. The US mobile app report. Tech. rep.Google ScholarGoogle Scholar
  15. Cooperstock, J. R., Fels, S. S., Buxton, W., and Smith, K. C. 1997. Reactive environments. Communications of the ACM 40, 9 (Sep), 65--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dardas, N. H., and Georganas, N. D. 2011. Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques. IEEE Transactions on Instrumentation and Measurement 60, 11, 3592--3607.Google ScholarGoogle ScholarCross RefCross Ref
  17. Dietz, P., and Leigh, D. 2001. Diamond Touch. In UIST '01, 219.Google ScholarGoogle Scholar
  18. Dorfmuller-Ulhaas, K., and Schmalstieg, D. 2001. Finger tracking for interaction in augmented environments. ISMAR 2001, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Duffner, S., Berlemont, S., Lefebvre, G., and Garcia, C. 2014. 3D gesture classification with convolutional neural networks. In ICASSP 2014, IEEE, 5432--5436.Google ScholarGoogle Scholar
  20. FCC, 2016. FCC online table of frequency allocations.Google ScholarGoogle Scholar
  21. Geng, S., Kivinen, J., Zhao, X., and Vainikainen, P. 2009. Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology 58, 1 (Jan), 3--13.Google ScholarGoogle Scholar
  22. Gillian, N., Knapp, R. B., and O'Modhrain, S. 2011. Recognition of multivariate temporal musical gestures using n-dimensional dynamic time warping. In Proceedings of the 2011 International Conference on New Interfaces for Musical Expression (NIME 11), Oslo, Norway.Google ScholarGoogle Scholar
  23. Gillian, N. 2011. Gesture Recognition for Musician Computer Interaction. PhD thesis, School of Music and Sonic Arts, Queen's University Belfast.Google ScholarGoogle Scholar
  24. Gustafson, S., Holz, C., and Baudisch, P. 2011. Imaginary phone: Learning imaginary interfaces by transferring spatial memory from a familiar device. UIST '11, 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Guyon, I., and Elisseeff, A. 2003. An introduction to variable and feature selection. The Journal of Machine Learning Research 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hansen, C. J. 2011. WiGiG: Multi-gigabit wireless communications in the 60 GHz band. IEEE Wireless Communications 18, 6, 6--7.Google ScholarGoogle ScholarCross RefCross Ref
  27. Harrison, C., Tan, D., and Morris, D. 2010. Skinput: Appropriating the body as an input surface. CHI 2010, 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A., and Häkkilä, J. 2008. Evaluating capacitive touch input on clothes. In MobileHCI '08, ACM Press, New York, New York, USA, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Holz, C., and Wilson, A. 2011. Data miming: Inferring spatial object descriptions from human gesture. CHI 2011, 811--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hussain, M. G. 1998. Ultra-wideband impulse radar -- an overview of the principles. IEEE Aerospace and Electronic Systems Magazine 13, 9, 9--14.Google ScholarGoogle ScholarCross RefCross Ref
  31. Ji, S., Xu, W., Yang, M., and Yu, K. 2013. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1, 221--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Junker, H., Amft, O., Lukowicz, P., and Tröster, G. 2008. Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition 41, 6, 2010--2024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Keller, J. B. 1962. Geometrical theory of diffraction. JOSA 52, 2, 116--130.Google ScholarGoogle ScholarCross RefCross Ref
  34. Kellogg, B., Talla, V., and Gollakota, S. 2014. Bringing gesture recognition to all devices. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 303--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Keskin, C., Kiraç, F., Kara, Y. E., and Akarun, L. 2013. Real time hand pose estimation using depth sensors. In Consumer Depth Cameras for Computer Vision. Springer, 119--137.Google ScholarGoogle Scholar
  36. Khoshelham, K., and Elberink, S. O. 2012. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors 12, 2, 1437--1454.Google ScholarGoogle ScholarCross RefCross Ref
  37. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J., Oikonomidis, I., and Olivier, P. 2012. Digits. UIST '12, 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Knott, E. F. 2012. Radar Cross Section Measurements. Springer Science & Business Media.Google ScholarGoogle Scholar
  39. Kurakin, A., Zhang, Z., and Liu, Z. 2012. A real time system for dynamic hand gesture recognition with a depth sensor. In 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 1975--1979.Google ScholarGoogle Scholar
  40. Lee, S., and Buxton, W. 1985. A multi-touch three dimensional touch-sensitive tablet. In CHI'85, 21--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Levanon, N. 2000. Multifrequency complementary phase-coded radar signal. IEE Proceedings - Radar, Sonar and Navigation 147, 6, 276--284.Google ScholarGoogle ScholarCross RefCross Ref
  42. LoPresti, L., LaCascia, M., Sclaroff, S., and Camps, O. 2015. Gesture modeling by Hanklet-based hidden Markov model. In Computer Vision -- ACCV 2014, D. Cremers, I. Reid, H. Saito, and M.-H. Yang, Eds., vol. 9005 of Lecture Notes in Computer Science. Springer International Publishing, 529--546.Google ScholarGoogle Scholar
  43. Melgarejo, P., Zhang, X., Ramanathan, P., and Chu, D. 2014. Leveraging directional antenna capabilities for fine-grained gesture recognition. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, 541--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Molchanov, P., Gupta, S., Kim, K., and Kautz, J. 2015. Hand gesture recognition with 3D convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 1--7.Google ScholarGoogle Scholar
  45. Molchanov, P., Gupta, S., Kim, K., and Pulli, K. 2015. Multi-sensor system for driver's hand-gesture recognition. In IEEE Conference on Automatic Face and Gesture Recognition.Google ScholarGoogle Scholar
  46. Molchanov, P., Gupta, S., Kim, K., and Pulli, K. 2015. Short-range FMCW monopulse radar for hand-gesture sensing. In IEEE Radar Conference (RadarCon 2015), IEEE, 1491--1496.Google ScholarGoogle Scholar
  47. Nasr, I., Karagozler, E., Poupyrev, I., and Trotta, S. 2015. A highly integrated 60-GHz 6-channel transceiver chip in 0.35 um SiGe technology for smart sensing and short-range communications. In IEEE CSICS 2015, IEEE, 1--4.Google ScholarGoogle Scholar
  48. Nasr, I., Jungmaier, R., Baheti, A., Noppeney, D., Bal, J. S., Wojnowski, M., Karagozler, E., Raja, H., Lien, J., Poupyrev, I., and Trotta, S. 2016. A highly integrated 60 GHz 6-channel transceiver with antenna in package for smart sensing and short range communications. submitted to IEEE Journal of Solid State Circuits.Google ScholarGoogle Scholar
  49. Nathanson, F. E., Reilly, J. P., and Cohen, M. N. 1991. Radar Design Principles -- Signal Processing and the Environment, vol. 91.Google ScholarGoogle Scholar
  50. Novelda. Novelda Xethru NVA620x IC.Google ScholarGoogle Scholar
  51. Otero, M. 2005. Application of a continuous wave radar for human gait recognition. Proceedings of SPIE 5809, 538--548.Google ScholarGoogle ScholarCross RefCross Ref
  52. Paradiso, J., Abler, C., Hsiao, K.-y., and Reynolds, M. 1997. The Magic Carpet: Physical sensing for immersive environments. In CHI'97 Extended Abstracts on Human Factors in Computing Systems, ACM, 277--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Paradiso, J. A. 1999. The Brain Opera technology: New instruments and gestural sensors for musical interaction and performance. Journal of New Music Research 28, 2, 130--149.Google ScholarGoogle Scholar
  54. Park, J.-I., and Kim, K.-T. 2010. A comparative study on ISAR imaging algorithms for radar target identification. Progress In Electromagnetics Research 108, 155--175.Google ScholarGoogle ScholarCross RefCross Ref
  55. Potter, L. C., Chiang, D.-M., Carriere, R., and Gerry, M. J. 1995. A GTD-based parametric model for radar scattering. IEEE Transactions on Antennas and Propagation 43, 10, 1058--1067.Google ScholarGoogle ScholarCross RefCross Ref
  56. Pu, Q., Gupta, S., Gollakota, S., and Patel, S. 2013. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, ACM, 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Rahman, T., Adams, A. T., Zhang, M., and Choudhury, T. 2015. DoppleSleep: A contactless unobtrusive sleep sensing system using short-range doppler radar. In Ubicomp '15, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Ralston, T. S., Charvat, G. L., and Peabody, J. E. 2010. Real-time through-wall imaging using an ultrawideband MIMO phased array radar system. In IEEE International Symposium on Phased Array Systems and Technology (ARRAY), IEEE.Google ScholarGoogle Scholar
  59. Rekimoto, J. 2001. GestureWrist and GesturePad: Unobtrusive wearable interaction devices. ISWC 2001, 21--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Richards, M. A., Scheer, J., Holm, W. A., et al. 2010. Principles of modern radar: basic principles. SciTech Pub.Google ScholarGoogle Scholar
  61. Romero, J., Kjellström, H., Ek, C. H., and Kragic, D. 2013. Non-parametric hand pose estimation with object context. Image and Vision Computing 31, 8, 555--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Russell, D., Streitz, N., and Winograd, T. 2005. Building disappearing computers. Communications of the ACM 48, 3, 42--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., Turner, J., and Landay, J. A. 2009. Enabling always-available input with muscle-computer interfaces. UIST 2009, 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann, C., Leichter, I., Vinnikov, A., Wei, Y., Freedman, D., Kohli, P., Krupka, E., Fitzgibbon, A., and Izadi, S. 2015. Accurate, robust, and flexible real-time hand tracking. CHI 2015, 3633--3642. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., and Moore, R. 2013. Real-time human pose recognition in parts from single depth images. Communications of the ACM 56, 1, 116--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Shuey, D., Bailey, D., and Morrissey, T. P. 1986. PHIGS: A standard, dynamic, interactive graphics interface. IEEE Computer Graphics and Applications 6, 8, 50--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Skolnik, M. I. 1962. Introduction to radar. Radar Handbook 2.Google ScholarGoogle Scholar
  68. Smith, C., and Goggans, P. 1993. Radar target identification. IEEE Antennas and Propagation Magazine 35, 2 (April), 27--38.Google ScholarGoogle ScholarCross RefCross Ref
  69. Smith, J., White, T., Dodge, C., Paradiso, J., Gershenfeld, N., and Allport, D. 1998. Electric field sensing for graphical interfaces. IEEE Computer Graphics and Applications 18, June, 54--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Smulders, P. 2002. Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions. IEEE Communications Magazine 40, 1, 140--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Song, J., Sörös, G., Pece, F., Fanello, S. R., Izadi, S., Keskin, C., and Hilliges, O. 2014. In-air gestures around unmodified mobile devices. UIST 2014, 319--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Storcheus, D., Rostamizadeh, A., and Kumar, S. 2015. A survey of modern questions and challenges in feature extraction. In Proceedings of the 1st International Workshop on Feature Extraction: Modern Questions and Challenges, NIPS, 1--18.Google ScholarGoogle Scholar
  73. Stove, A. G. 1992. Linear FMCW radar techniques. In IEEE Proceedings on Radar and Signal Processing, vol. 139, IET, 343--350.Google ScholarGoogle ScholarCross RefCross Ref
  74. Strickon, J., and Paradiso, J. 1998. Tracking hands above large interactive surfaces with a low-cost scanning laser rangefinder. CHI'98, 231--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Sutherland, I. E., Blackwell, A., and Rodden, K. 1963. Sketchpad: A man-machine graphical communication system. Tech. Rep. TK296, Lincoln Laboratory, MIT, Lexington, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Wan, Q., Li, Y., Li, C., and Pal, R. 2014. Gesture recognition for smart home applications using portable radar sensors. In 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2014), IEEE, 6414--6417.Google ScholarGoogle Scholar
  77. Wang, Y., and Fathy, A. E. 2011. Micro-doppler signatures for intelligent human gait recognition using a UWB impulse radar. In IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2103--2106.Google ScholarGoogle Scholar
  78. Wang, R. Y., and Popović, J. 2009. Real-time hand-tracking with a color glove. In SIGGRAPH 2009, ACM Press, New York, New York, USA, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Watson-Watt, R. 1945. Radar in war and in peace. Nature 155, 3935, 319--324.Google ScholarGoogle Scholar
  80. Wei, T., and Zhang, X. 2015. mTrack: High-precision passive tracking using millimeter wave radios. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, ACM, 117--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Weichert, F., Bachmann, D., Rudak, B., and Fisseler, D. 2013. Analysis of the accuracy and robustness of the Leap Motion controller. Sensors 13, 5, 6380--6393.Google ScholarGoogle ScholarCross RefCross Ref
  82. Weigel, M., Lu, T., Bailly, G., Oulasvirta, A., Majidi, C., and Steimle, J. 2015. iSkin: Flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In CHI 2015, ACM, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Wu, J., Konrad, J., and Ishwar, P. 2013. Dynamic time warping for gesture-based user identification and authentication with Kinect. In ICASSP 2013, 2371--2375.Google ScholarGoogle Scholar
  84. Yatani, K., and Truong, K. N. 2012. BodyScope: A wearable acoustic sensor for activity recognition. In Ubicomp '12, ACM, 341--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Zhai, S., Milgram, P., and Buxton, W. 1996. The influence of muscle groups on performance of multiple degree-of-freedom input. CHI '96, 308--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Zhuang, Y., Song, C., Wang, A., Lin, F., Li, Y., Gu, C., Li, C., and Xu, W. 2015. SleepSense: Non-invasive sleep event recognition using an electromagnetic probe. In IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN 2015), 1--6.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Soli: ubiquitous gesture sensing with millimeter wave radar

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 4
          July 2016
          1396 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2897824
          Issue’s Table of Contents

          Copyright © 2016 Owner/Author

          This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 July 2016
          Published in tog Volume 35, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader