skip to main content
10.1145/3018661.3018681acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Public Access

Online Matrix Completion for Signed Link Prediction

Authors Info & Claims
Published:02 February 2017Publication History

ABSTRACT

This work studies the binary matrix completion problem underlying a large body of real-world applications such as signed link prediction and information propagation. That is, each entry of the matrix indicates a binary preference such as "like" or "dislike", "trust" or "distrust". However, the performance of existing matrix completion methods may be hindered owing to three practical challenges: 1) the observed data are with binary label (i.e., not real value); 2) the data are typically sampled non-uniformly (i.e., positive links dominate the negative ones) and 3) a network may have a huge volume of data (i.e., memory and computational issue).

In order to remedy these problems, we propose a novel framework which {i} maximizes the resemblance between predicted and observed matrices as well as penalizing the logistic loss to fit the binary data to produce binary estimates; {ii} constrains the matrix max-norm and maximizes the F-score to handle non-uniformness and {iii} presents online optimization technique, hence mitigating the memory cost. Extensive experiments performed on four large-scale datasets with up to hundreds of thousands of users demonstrate the superiority of our framework over the state-of-the-art matrix completion based methods and popular link prediction approaches.

References

  1. D. Billsus and M. J. Pazzani. Learning collaborative information filters. In Proceedings of the 15th International Conference on Machine Learning, pages 46--54, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Burer and R. D. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, 103(3):427--444, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Busa-Fekete, B. Szörényi, K. Dembczynski, and E. Hüllermeier. Online f-measure optimization. In NIPS, pages 595--603, 2015.Google ScholarGoogle Scholar
  4. J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956--1982, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Cai and W.-X. Zhou. A max-norm constrained minimization approach to 1-bit matrix completion. The Journal of Machine Learning Research, 14(1):3619--3647, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6):717--772, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon. Exploiting longer cycles for link prediction in signed networks. In CIKM, pages 1157--1162, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Chowdhury. Introduction to modern information retrieval. Facet publishing, 2010.Google ScholarGoogle Scholar
  9. M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, Mar. 2014.Google ScholarGoogle Scholar
  10. R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In WWW, pages 403--412, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. İ Güneş, Ş. Gündüz-Ö güdücü, and Z. Çataltepe. Link prediction using time series of neighborhood-based node similarity scores. Data Mining and Knowledge Discovery, 30(1):147--180, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Hsieh, K. Chiang, and I. S. Dhillon. Low rank modeling of signed networks. In KDD, pages 507--515, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Huang, F. Nie, and H. Huang. Robust discrete matrix completion. In AAAI, pages 424--430, 2013.Google ScholarGoogle Scholar
  14. J. Huang, F. Nie, H. Huang, Y. Lei, and C. Ding. Social trust prediction using rank-k matrix recovery. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pages 2647--2653, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Huang, F. Nie, H. Huang, and Y.-C. Tu. Trust prediction via aggregating heterogeneous social networks. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pages 1774--1778, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Jain, R. Meka, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. In NIPS, pages 937--945, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In Proceedings of the 8th ACM SIGKDD iInternational Conference on Knowledge Discovery and Data mining, pages 538--543, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Z. Kang, C. Peng, and Q. Cheng. Top-n recommender system via matrix completion. In AAAI, pages 179--185, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda. Link propagation: A fast semi-supervised learning algorithm for link prediction. In SDM, volume 9, pages 1099--1110. SIAM, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  20. L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39--43, 1953. Google ScholarGoogle ScholarCross RefCross Ref
  21. R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE Transactions on Information Theory, 56(6):2980--2998, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. D. Lee, B. Recht, N. Srebro, J. Tropp, and R. R. Salakhutdinov. Practical large-scale optimization for max-norm regularization. In NIPS, pages 1297--1305, 2010.Google ScholarGoogle Scholar
  24. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online social networks. In Proceedings of the 19th International Conference on World Wide Web, pages 641--650, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Li, T. Hastie, and K. W. Church. Very sparse random projections. In KDD, pages 287--296, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the American society for information science and technology, 58(7):1019--1031, 2007. Google ScholarGoogle ScholarCross RefCross Ref
  27. D. Liben-Nowell and J. M. Kleinberg. The link prediction problem for social networks. In CIKM, pages 556--559, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Linial, S. Mendelson, G. Schechtman, and A. Shraibman. Complexity measures of sign matrices. Combinatorica, 27(4):439--463, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, pages 287--296. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. E. Newman. Clustering and preferential attachment in growing networks. Physical Review E, 64(2):025102, 2001. Google ScholarGoogle ScholarCross RefCross Ref
  31. R. Ni and Q. Gu. Optimal statistical and computational rates for one bit matrix completion. In AISTATS, pages 426--434, 2016.Google ScholarGoogle Scholar
  32. N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. Collaborative filtering with graph information: Consistency and scalable methods. In NIPS, pages 2098--2106, 2015.Google ScholarGoogle Scholar
  33. B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471--501, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Shen, H. Xu, and P. Li. Online optimization for max-norm regularization. In NIPS, pages 1718--1726, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Shrivastava and P. Li. Asymmetric minwise hashing for indexing binary inner products and set containment. In WWW, pages = 981--991, year = 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Shrivastava and P. Li. Fast near neighbor search in high-dimensional binary data. In ECML-PKDD, pages 474--489, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. N. Srebro, J. D. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In NIPS, pages 1329--1336, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In Learning Theory, pages 545--560. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Tang, S. Chang, C. C. Aggarwal, and H. Liu. Negative link prediction in social media. In WSDM, pages 87--96, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Tang, H. Gao, X. Hu, and H. Liu. Exploiting homophily effect for trust prediction. In WSDM, pages 53--62, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Tang and H. Liu. Trust in social media. Synthesis Lectures on Information Security, Privacy, & Trust, 10(1):1--129, 2015.Google ScholarGoogle Scholar

Index Terms

  1. Online Matrix Completion for Signed Link Prediction

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            WSDM '17: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
            February 2017
            868 pages
            ISBN:9781450346757
            DOI:10.1145/3018661

            Copyright © 2017 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 2 February 2017

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            WSDM '17 Paper Acceptance Rate80of505submissions,16%Overall Acceptance Rate498of2,863submissions,17%

            Upcoming Conference

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader