skip to main content
10.1145/3077136.3080714acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
short-paper

On Including the User Dynamic in Learning to Rank

Published:07 August 2017Publication History

ABSTRACT

Ranking query results effectively by considering user past behaviour and preferences is a primary concern for IR researchers both in academia and industry. In this context, LtR is widely believed to be the most effective solution to design ranking models that account for user-interaction features that have proved to remarkably impact on IR effectiveness. In this paper, we explore the possibility of integrating the user dynamic directly into the LtR algorithms. Specifically, we model with Markov chains the behaviour of users in scanning a ranked result list and we modify Lambdamart, a state-of-the-art LtR algorithm, to exploit a new discount loss function calibrated on the proposed Markovian model of user dynamic. We evaluate the performance of the proposed approach on publicly available LtR datasets, finding that the improvements measured over the standard algorithm are statistically significant.

References

  1. E. Agichtein, E. Brill, and S. Dumais. Improving Web Search Ranking by Incorporating User Behavior Information. In SIGIR, pages 19--26, ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Broder. A Taxonomy of Web Search. SIGIR Forum, 36(2):3--10, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to Rank Using Gradient Descent. In ICML, pages 89--96, ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview. Technical Report, 2010.Google ScholarGoogle Scholar
  5. C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to Rank with Nonsmooth Cost Functions. In NIPS, Vol. 6, pages 193--200, 2006.Google ScholarGoogle Scholar
  6. G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego and N. Tonellotto. Quality versus Efficiency in Document Scoring with Learning-to-Rank Models. In IPM, 52(6):1161--1177, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale Validation and Analysis of Interleaved Search Evaluation. In TOIS, 30(1):6:1--6:41, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees. In TOIS, 35(2):15:1--15:31, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Donmez, K. M. Svore, and C. J. C. Burges. On the Local Optimality of LambdaRank. In SIGIR, pages 460--467, ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Ferrante, N. Ferro, and M. Maistro. Injecting User Models and Time into Precision via Markov Chains. In SIGIR, pages 597--606, ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing Historical Interaction Data for Faster Online Learning to Rank for IR. In WSDM, pages 183--192, ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Liu. Learning to Rank for Information Retrieval. IN FnTIR, 3(3):225--331, 2009.Google ScholarGoogle Scholar
  13. C. Lucchese, S. Orlando, R. Perego, F. Silvestri and G. Tolomei. Discovering tasks from search engine query logs. In TOIS, 31(3):14:1--14:43, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. R. Norris. Markov Chains. Cambridge University Press, 1998.Google ScholarGoogle Scholar
  15. T. Qin, and T. Liu. Introducing LETOR 4.0 Datasets. In CoRR, 2013.Google ScholarGoogle Scholar
  16. A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An Online Learning to Rank Framework. In LivingLab, pages 23--26, ACM, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Serdyukov, N. Craswell, G. Dupret. WSCD2012: Workshop on Web Search Click Data 2012. In WSDM, pages 771--772, ACM, 2012.Google ScholarGoogle Scholar
  18. I. Teodorescu. Maximum Likelihood Estimation for Markov Chains. In arXiv preprint arXiv:0905.4131, 2009.Google ScholarGoogle Scholar
  19. Q. Wu, Burges, C. J. C. Christopher K. M. Svore, J. Gao. Adapting boosting for information retrieval measures. In Information Retrieval, 13(3):254--270, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Yilmaz, M. Shokouhi, N. Craswell, and S. Robertson. Expected Browsing Utility for Web Search Evaluation. In CIKM, pages 1561--1565, ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Zhang, L. A. F. Park, and A. Moffat. Click-based Evidence for Decaying Weight Distributions in Search Effectiveness Metrics. In Information Retrieval, 13(1):46--69, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On Including the User Dynamic in Learning to Rank

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGIR '17: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval
          August 2017
          1476 pages
          ISBN:9781450350228
          DOI:10.1145/3077136

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 August 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • short-paper

          Acceptance Rates

          SIGIR '17 Paper Acceptance Rate78of362submissions,22%Overall Acceptance Rate792of3,983submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader