skip to main content
research-article
Public Access

Closed-Loop Quantitative Verification of Rate-Adaptive Pacemakers

Authors Info & Claims
Published:09 August 2018Publication History
Skip Abstract Section

Abstract

Rate-adaptive pacemakers are cardiac devices able to automatically adjust the pacing rate in patients with chronotropic incompetence, i.e., whose heart is unable to provide an adequate rate at increasing levels of physical, mental, or emotional activity. These devices work by processing data from physiological sensors in order to detect the patient’s activity and update the pacing rate accordingly. Rate adaptation parameters depend on many patient-specific factors, and effective personalization of such treatments can only be achieved through extensive exercise testing, which is normally intolerable for a cardiac patient. In this work, we introduce a data-driven and model-based approach for the automated verification of rate-adaptive pacemakers and formal analysis of personalized treatments. To this purpose, we develop a novel dual-sensor pacemaker model where the adaptive rate is computed by blending information from an accelerometer, and a metabolic sensor based on the QT interval. Our approach enables personalization through the estimation of heart model parameters from patient data (electrocardiogram), and closed-loop analysis through the online generation of synthetic, model-based QT intervals and acceleration signals. In addition to personalization, we also support the derivation of models able to account for the varied characteristics of a virtual patient population, thus enabling safety verification of the device. To capture the probabilistic and nonlinear dynamics of the heart, we define a probabilistic extension of timed I/O automata with data and employ statistical model checking for quantitative verification of rate modulation. We evaluate our rate-adaptive pacemaker design on three subjects and a pool of virtual patients, demonstrating the potential of our approach to provide rigorous, quantitative insights into the closed-loop behavior of the device under different exercise levels and heart conditions.

Skip Supplemental Material Section

Supplemental Material

References

  1. Freddy M. Abi-Samra, Narendra Singh, Benjamin L. Rosin, Jerome V. Dwyer, Crystal D. Miller, and CLEAR Study Investigators. 2013. Effect of rate-adaptive pacing on performance and physiological parameters during activities of daily living in the elderly: Results from the CLEAR (cylos responds with physiologic rate changes during daily activities) study. Europace 15, 6 (2013), 849--856.Google ScholarGoogle ScholarCross RefCross Ref
  2. Staffan Ahnve and Hans Vallin. 1982. Influence of heart rate and inhibition of autonomic tone on the QT interval. Circulation 65, 3 (1982), 435--439.Google ScholarGoogle ScholarCross RefCross Ref
  3. Weiwei Ai, Nitish Patel, and Partha Roop. 2016. Requirements-centric closed-loop validation of implantable cardiac devices. In Design, Automation 8 Test in Europe Conference 8 Exhibition (DATE’16). IEEE, 846--849. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Weiwei Ai, Nitish D. Patel, Partha S. Roop, Avinash Malik, Sidharta Andalam, Eugene Yip, Nathan Allen, and Mark L. Trew. 2018. A parametric computational model of the action potential of pacemaker cells. IEEE Transactions on Biomedical Engineering 65, 1 (2018), 123--130.Google ScholarGoogle ScholarCross RefCross Ref
  5. Paul Albrecht. 1983. ST Segment Characterization for Long Term Automated ECG Analysis. PhD Thesis. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.Google ScholarGoogle Scholar
  6. Rajeev Alur. 1999. Timed automata. In International Conference on Computer Aided Verification. Springer, 8--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Francesco Amigoni, Alessandro Beda, and Nicola Gatti. 2006. Combining rate-adaptive cardiac pacing algorithms via multiagent negotiation. IEEE Transactions on Information Technology in Biomedicine 10, 1 (2006), 11--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using smartphones. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’13).Google ScholarGoogle Scholar
  9. Paolo Ballarini, Benoît Barbot, Marie Duflot, Serge Haddad, and Nihal Pekergin. 2015. HASL: A new approach for performance evaluation and model checking from concepts to experimentation. Performance Evaluation 90 (2015), 53--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Benoît Barbot, Marta Kwiatkowska, Alexandru Mereacre, and Nicola Paoletti. 2015a. Estimation and verification of hybrid heart models for personalised medical and wearable devices. In Computational Methods in Systems Biology (LNCS), Vol. 9308. Springer, 3--7.Google ScholarGoogle Scholar
  11. Benoît Barbot, Marta Kwiatkowska, Alexandru Mereacre, and Nicola Paoletti. 2015b. Estimation and Verification of Hybrid Heart Models for Personalised Medical and Wearable Devices. Technical Report CS-RR-15-05. Department of Computer Science, University of Oxford.Google ScholarGoogle Scholar
  12. Benoît Barbot, Marta Kwiatkowska, Alexandru Mereacre, and Nicola Paoletti. 2016. Building power consumption models from executable timed I/O automata specifications. In Hybrid Systems: Computation and Control (HSCC’16). ACM, 195--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chris Barker, Marta Kwiatkowska, Alexandru Mereacre, Nicola Paoletti, and Andrea Patanè. 2015. Hardware-in-the-loop simulation and energy optimization of cardiac pacemakers. In IEEE Engineering in Medicine and Biology Society (EMBC’15). IEEE, 7188--7191.Google ScholarGoogle Scholar
  14. Ezio Bartocci, Flavio Corradini, Maria Rita Di Berardini, Emilia Entcheva, Scott A. Smolka, and Radu Grosu. 2009. Modeling and simulation of cardiac tissue using hybrid i/o automata. Theoretical Computer Science 410, 33 (2009), 3149--3165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alan D. Bernstein, Jean-Claude Daubert, Ross D. Fletcher, David L. Hayes, Berndt Lüderitz, Dwight W. Reynolds, Mark H. Schoenfeld, and Richard Sutton. 2002. The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. Pacing and Clinical Electrophysiology 25, 2 (2002), 260--264.Google ScholarGoogle ScholarCross RefCross Ref
  16. Adam Bohm, Robert Kiss, Paul Dorian, and Arnold Pinter. 2010. Single-chamber, rate-responsive pacemaker-mediated tachycardia. Canadian Journal of Cardiology 26, 9 (2010), e340.Google ScholarGoogle ScholarCross RefCross Ref
  17. Reto Candinas, Markus Jakob, Thomas A. Buckingham, Heidy Mattmann, and F. Wolfgang Amann. 1997. Vibration, acceleration, gravitation, and movement: Activity controlled rate adaptive pacing during treadmill exercise testing and daily life activities. Pacing and Clinical Electrophysiology 20, 7 (1997), 1777--1786.Google ScholarGoogle ScholarCross RefCross Ref
  18. Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre. 2014. Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Information and Computation 236 (2014), 87--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Saisakul Chernbumroong, Anthony S. Atkins, and Hongnian Yu. 2011. Activity classification using a single wrist-worn accelerometer. In 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA’11). IEEE, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  20. Patrick Davey and Jeffrey Bateman. 1999. Heart rate and catecholamine contribution to QT interval shortening on exercise. Clinical Cardiology 22, 8 (1999), 513--518.Google ScholarGoogle ScholarCross RefCross Ref
  21. Simonetta Dell’Orto, Paolo Valli, and Enrico Maria Greco. 2004. Sensors for rate responsive pacing. Indian Pacing and Electrophysiology Journal 4, 3 (2004), 137.Google ScholarGoogle Scholar
  22. Simon Eberz, Nicola Paoletti, Marc Roeschlin, Andrea Patanè, Marta Kwiatkowska, and Ivan Martinovic. 2017. Broken hearted: How to attack ECG biometrics. In Network and Distributed System Security Symposium.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kenneth A. Ellenbogen, Bruce L. Wilkoff, G. Neal Kay, Chu Pak Lau, and Angelo Auricchio. 2016. Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy. Elsevier Health Sciences.Google ScholarGoogle Scholar
  24. Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. 2000. Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101, 23 (2000), e215--e220.Google ScholarGoogle ScholarCross RefCross Ref
  25. Artur Oliveira Gomes and Marcel Vinicius Medeiros Oliveira. 2009. Formal specification of a cardiac pacing system. In Formal Methods (FM’09). Springer, 692--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Radu Grosu, Gregory Batt, Flavio H. Fenton, James Glimm, Colas Le Guernic, Scott A. Smolka, and Ezio Bartocci. 2011. From cardiac cells to genetic regulatory networks. In Computer Aided Verification. Springer, 396--411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. John R. Hampton and David Adlam. 2013. The ECG in Practice. Elsevier Health Sciences.Google ScholarGoogle Scholar
  28. Paul A. Iaizzo. 2009. Handbook of Cardiac Anatomy, Physiology, and Devices. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  29. Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam. 2012. Modeling and verification of a dual chamber implantable pacemaker. In Tools and Algorithms for the Construction and Analysis of Systems. Springer, 188--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. 2003. Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review 45, 3 (2003), 385--482.Google ScholarGoogle ScholarCross RefCross Ref
  31. Marta Kwiatkowska, Harriet Lea-Banks, Alexandru Mereacre, and Nicola Paoletti. 2014. Formal modelling and validation of rate-adaptive pacemakers. In 2014 IEEE International Conference on Healthcare Informatics (ICHI’14). IEEE, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Marta Kwiatkowska, Alexandru Mereacre, Nicola Paoletti, and Andrea Patanè. 2015. Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary computation techniques. In Hybrid Systems and Biology (HSB’15) (LNCS/LNBI), Vol. 9271. Springer, 119--140.Google ScholarGoogle Scholar
  33. Gervasio A. Lamas, J. David Knight, Michael O. Sweeney, Marcus Mianulli, Vinod Jorapur, Koroush Khalighi, James R. Cook, Russell Silverman, Lawrence Rosenthal, Nancy Clapp-Channing, Kerry L. Lee, and Daniel B. Mark. 2007. Impact of rate-modulated pacing on quality of life and exercise capacity evidence from the advanced elements of pacing randomized controlled trial (ADEPT). Heart Rhythm 4, 9 (2007), 1125--1132.Google ScholarGoogle ScholarCross RefCross Ref
  34. Chu-Pak Lau, Hung-Fat Tse, A. John Camm, and Serge S. Barold. 2007. Evolution of pacing for bradycardias: Sensors. European Heart Journal Supplements 9, suppl I (2007), I11--I22.Google ScholarGoogle ScholarCross RefCross Ref
  35. Jie Lian, Hannes Krätschmer, Dirk Müssig, and L. Stotts. 2010. Open source modeling of heart rhythm and cardiac pacing. Open Pacing Electrophysiology Therapy Journal 3 (2010), 4.Google ScholarGoogle Scholar
  36. Jie Lian, D. Mussig, and Volker Lang. 2006. Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing. IEEE Transactions on Biomedical Engineering 53, 8 (2006), 1512--1520.Google ScholarGoogle ScholarCross RefCross Ref
  37. Hugo Daniel Macedo, Peter Gorm Larsen, and John Fitzgerald. 2008. Incremental development of a distributed real-time model of a cardiac pacing system using VDM. In Formal Methods. 181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Anthony R. Magnano, Steve Holleran, Rajasekhar Ramakrishnan, James A. Reiffel, and Daniel M. Bloomfield. 2002. Autonomic nervous system influences on QT interval in normal subjects. Journal of the American College of Cardiology 39, 11 (2002), 1820--1826.Google ScholarGoogle ScholarCross RefCross Ref
  39. Merak Malik, P. Färbom, V. Batchvarov, K. Hnatkova, and A. J. Camm. 2002. Relation between QT and RR intervals is highly individual among healthy subjects: Implications for heart rate correction of the QT interval. Heart 87, 3 (2002), 220--228.Google ScholarGoogle ScholarCross RefCross Ref
  40. Jaakko Malmivuo and Robert Plonsey. 1995. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press.Google ScholarGoogle ScholarCross RefCross Ref
  41. Vias Markides and Richard J. Schilling. 2003. Atrial fibrillation: Classification, pathophysiology, mechanisms and drug treatment. Heart 89, 8 (2003), 939--943.Google ScholarGoogle ScholarCross RefCross Ref
  42. Patrick E. McSharry, Gari D. Clifford, Lionel Tarassenko, and Leonard A. Smith. 2003. A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering 50, 3 (2003), 289--294.Google ScholarGoogle ScholarCross RefCross Ref
  43. Dominique Méry, Bernhard Schätz, and Alan Wassyng. 2014. The pacemaker challenge: Developing certifiable medical devices (Dagstuhl seminar 14062). Dagstuhl Reports 4, 2 (2014), 17--37.Google ScholarGoogle Scholar
  44. Dominique Méry and Neeraj Kumar Singh. 2009. Pacemaker’s Functional Behaviors in Event-B. Rapport de recherche. Retrieved from http://hal.inria.fr/inria-00419973.Google ScholarGoogle Scholar
  45. Benjamin Monteil, Sylvain Ploux, Romain Eschalier, Philippe Ritter, Michel Haissaguerre, Jayanthi N. Koneru, Kenneth A. Ellenbogen, and Pierre Bordachar. 2015. Pacemaker-mediated tachycardia: Manufacturer specifics and spectrum of cases. Pacing and Clinical Electrophysiology 38, 12 (2015), 1489--1498.Google ScholarGoogle ScholarCross RefCross Ref
  46. Kazunori Ohkawara, Yoshitake Oshima, Yuki Hikihara, Kazuko Ishikawa-Takata, Izumi Tabata, and Shigeho Tanaka. 2011. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. British Journal of Nutrition 105 (6 2011), 1681--1691.Google ScholarGoogle Scholar
  47. Miroslav Pajic, Zhihao Jiang, Insup Lee, Oleg Sokolsky, and Rahul Mangharam. 2012. From verification to implementation: A model translation tool and a pacemaker case study. In 2012 IEEE 18th Real-Time and Embedded Technology and Applications Symposium (RTAS’12). IEEE, 173--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jiapu Pan and Willis J. Tompkins. 1985. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering 3 (1985), 230--236.Google ScholarGoogle ScholarCross RefCross Ref
  49. John W. Poore and Brian M. Mann. 1991. Self-adjusting rate-responsive pacemaker and method thereof. Retrieved from https://www.google.co.uk/patents/US5074302. US Patent 5,074,302.Google ScholarGoogle Scholar
  50. Reza Sameni, Mohammad B. Shamsollahi, Christian Jutten, and Gari D. Clifford. 2007. A nonlinear bayesian filtering framework for ECG denoising. IEEE Transactions on Biomedical Engineering 54, 12 (2007), 2172--2185.Google ScholarGoogle ScholarCross RefCross Ref
  51. Dominic P. Searson. 2015. GPTIPS 2: An open-source software platform for symbolic data mining. In Handbook of Genetic Programming Applications. Springer.Google ScholarGoogle Scholar
  52. Jae-Woo Shin, Jung-Han Yoon, and Y. R. Yoon. 2001. Rate-adaptive pacemaker controlled by motion and respiratory rate using neuro-fuzzy algorithm. Medical and Biological Engineering and Computing 39, 6 (2001), 694--699.Google ScholarGoogle ScholarCross RefCross Ref
  53. Hirofumi Tanaka, Kevin D. Monahan, and Douglas R. Seals. 2001. Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology 37, 1 (2001), 153--156.Google ScholarGoogle ScholarCross RefCross Ref
  54. Luu Anh Tuan, Man Chun Zheng, and Quan Thanh Tho. 2010. Modeling and verification of safety critical systems: A case study on pacemaker. In 2010 4th International Conference on Secure Software Integration and Reliability Improvement (SSIRI’10). IEEE, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jin Wang, Ronghua Chen, Xiangping Sun, Mary F. H. She, and Yuchuan Wu. 2011. Recognizing human daily activities from accelerometer signal. Procedia Engineering 15 (2011), 1780--1786.Google ScholarGoogle ScholarCross RefCross Ref
  56. Bruce L. Wilkoff, Joseph Corey, and Gordon Blackburn. 1989. A mathematical model of the cardiac chronotropic response to exercise. Journal of Electrophysiology 3, 3 (1989), 176--180.Google ScholarGoogle ScholarCross RefCross Ref
  57. Pei Ye, Emilia Entcheva, Radu Grosu, and Scott A. Smolka. 2005. Efficient modeling of excitable cells using hybrid automata. In Proceedings of the 3rd International Conference on Computational Methods in Systems Biology, Vol. 5. 216--227.Google ScholarGoogle Scholar
  58. Håkan L. S. Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. 2006. Numerical vs. statistical probabilistic model checking. International Journal on Software Tools for Technology Transfer 8, 3 (2006), 216--228.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Closed-Loop Quantitative Verification of Rate-Adaptive Pacemakers

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Cyber-Physical Systems
          ACM Transactions on Cyber-Physical Systems  Volume 2, Issue 4
          Special Issue on Medical CPS Papers
          October 2018
          313 pages
          ISSN:2378-962X
          EISSN:2378-9638
          DOI:10.1145/3236466
          • Editor:
          • Tei-Wei Kuo
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 August 2018
          • Accepted: 1 October 2017
          • Revised: 1 May 2017
          • Received: 1 September 2016
          Published in tcps Volume 2, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader