skip to main content
10.1145/3292500.3330762acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Precipitation Nowcasting with Satellite Imagery

Published:25 July 2019Publication History

ABSTRACT

Precipitation nowcasting is a short-range forecast of rain/snow (up to 2 hours), often displayed on top of the geographical map by the weather service. Modern precipitation nowcasting algorithms rely on the extrapolation of observations by ground-based radars via optical flow techniques or neural network models. Dependent on these radars, typical nowcasting is limited to the regions around their locations. We have developed a method for precipitation nowcasting based on geostationary satellite imagery and incorporated the resulting data into the Yandex.Weather precipitation map (including an alerting service with push notifications for products in the Yandex ecosystem), thus expanding its coverage and paving the way to a truly global nowcasting service.

Skip Supplemental Material Section

Supplemental Material

p2680-lebedev.mp4

mp4

1.3 GB

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. Mikhail Royzner Victor Lamburt Dmitry Solomentsev Svetlana Pospelova Aleksandr Yuzhakov, Pavel Vorobyev. 2017. Method of and system for generating a weather forecast. US Patent US20170299772A1.Google ScholarGoogle Scholar
  3. Donny M. Aminou. 2002. MSG's SEVIRI instrument. ESA bulletin. Bulletin ASE. European Space Agency (2002).Google ScholarGoogle Scholar
  4. A Bellon and GL Austin. 1978. The evaluation of two years of real-time operation of a short-term precipitation forecasting procedure (SHARP). Journal of Applied Meteorology 17, 12 (1978), 1778--1787.Google ScholarGoogle ScholarCross RefCross Ref
  5. Neill EH Bowler, Clive E Pierce, and Alan Seed. 2004. Development of a precipitation nowcasting algorithm based upon optical flow techniques. Journal of Hydrology (2004).Google ScholarGoogle Scholar
  6. Environmental Modeling Center. 2003. The GFS Atmospheric Model. NCEP Office Note 442, Global Climate andWeather Modeling Branch, EMC, Camp Springs, Maryland (2003).Google ScholarGoogle Scholar
  7. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  8. DeepGlobe. 2018. DeepGlobe CVPR 2018 workshop and challenge. http: //deepglobe.org/Google ScholarGoogle Scholar
  9. Thomas Heinemann, A Latanzio, and Fausto Roveda. 2002. The Eumetsat multisensor precipitation estimate (MPE). In Second International PrecipitationWorking group (IPWG) Meeting. 23--27.Google ScholarGoogle Scholar
  10. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Vladimir Ivashkin and Vadim Lebedev. 2018. Spatiotemporal Data Fusion for Precipitation Nowcasting. arXiv preprint arXiv:1812.10915 (2018).Google ScholarGoogle Scholar
  12. Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. 2015. Spatial transformer networks. In Advances in neural information processing systems. 2017-- 2025. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kaggle. 2017. Dstl Satellite Imagery Feature Detection. https://www.kaggle. com/c/dstl-satellite-imagery-feature-detectionGoogle ScholarGoogle Scholar
  14. Pascal Kaiser, Jan DirkWegner, Aurélien Lucchi, Martin Jaggi, Thomas Hofmann, and Konrad Schindler. 2017. Learning aerial image segmentation from online maps. IEEE Transactions on Geoscience and Remote Sensing 55, 11 (2017), 6054-- 6068.Google ScholarGoogle ScholarCross RefCross Ref
  15. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. Interantional Conference on Learning Representations (2014).Google ScholarGoogle Scholar
  16. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common objects in context. In European conference on computer vision. Springer, 740--755.Google ScholarGoogle Scholar
  17. Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3431--3440.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. S. Marshall and W. McK. Palmer. 1948. The distribution of raindrops with size. J. Meteor. 5 (1948), 165-166.Google ScholarGoogle Scholar
  19. Gellért Máttyus, Wenjie Luo, and Raquel Urtasun. 2017. Deeproadmapper: Extracting road topology from aerial images. In Proceedings of the IEEE International Conference on Computer Vision. 3438--3446.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hanna Meyer, Meike Kühnlein, Tim Appelhans, and Thomas Nauss. 2016. Comparison of four machine learning algorithms for their applicability in satellitebased optical rainfall retrievals. Atmospheric Research 169 (2016), 424--433.Google ScholarGoogle ScholarCross RefCross Ref
  21. World Meteorological Organization. 2015. Manual on Codes - International Codes, Volume I.1, Annex II to the WMO Technical Regulations: part A - Alphanumeric Codes. https://library.wmo.int/index.php?lvl=notice_display&id=13617Google ScholarGoogle Scholar
  22. Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele Facciolo. 2013. TV-L1 optical flow estimation. Image Processing On Line 2013 (2013), 137--150.Google ScholarGoogle ScholarCross RefCross Ref
  23. Tobias Pohlen, Alexander Hermans, Markus Mathias, and Bastian Leibe. 2017. Full-resolution residual networks for semantic segmentation in street scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4151--4160.Google ScholarGoogle ScholarCross RefCross Ref
  24. RA Roebeling and I Holleman. 2009. SEVIRI rainfall retrieval and validation using weather radar observations. Journal of Geophysical Research: Atmospheres 114, D21 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  25. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234--241.Google ScholarGoogle ScholarCross RefCross Ref
  26. Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).Google ScholarGoogle Scholar
  27. Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances in neural information processing systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun Woo. 2017. Deep learning for precipitation nowcasting: A benchmark and a new model. In Advances in Neural Information Processing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. G. Asrar Y. Furuhama A. Ginati C. Kummerow V. Levizzani A. Mugnai K. Nakamura R. Adler V. Casse M. Cleave M. Debois Smith, E. A. and J. Durning. 2007. International Global Precipitation Measurement (GPM) Program and Mission: An Overview. Springer - Measuring Precipitation from Space - EURAINSAT and the future. Eds. V. Levizzani, P. Bauer, and F. J. Turk 28 (2007), 611-653.Google ScholarGoogle Scholar
  30. Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. 2017. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, 240--248.Google ScholarGoogle Scholar
  31. Juanzhen Sun, Ming Xue, James W Wilson, Isztar Zawadzki, Sue P Ballard, Jeanette Onvlee-Hooimeyer, Paul Joe, Dale M Barker, Ping-Wah Li, Brian Golding, et al. 2014. Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bulletin of the American Meteorological Society 95, 3 (2014), 409--426.Google ScholarGoogle ScholarCross RefCross Ref
  32. Tao Sun, Zehui Chen, Wenxiang Yang, and Yin Wang. 2018. Stacked u-nets with multi-output for road extraction. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 187--1874.Google ScholarGoogle ScholarCross RefCross Ref
  33. Yumeng Tao, Xiaogang Gao, Alexander Ihler, Soroosh Sorooshian, and Kuolin Hsu. 2017. Precipitation identification with bispectral satellite information using deep learning approaches. Journal of Hydrometeorology 18, 5 (2017), 1271--1283.Google ScholarGoogle ScholarCross RefCross Ref
  34. Google Trends. 2019. Google Trends. https://g.co/trends/GGij8Google ScholarGoogle Scholar
  35. BJ Turner, I Zawadzki, and U Germann. 2004. Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). Journal of Applied Meteorology 43, 2 (2004), 231--248.Google ScholarGoogle ScholarCross RefCross Ref
  36. Yandex.Radar. 2019. Global internet analytics Yandex.Radar. https://radar. yandex.ru/top_list?month=2018--12&row_id=yandex-ru-pogoda&offset=10Google ScholarGoogle Scholar
  37. A. N. Lukyanov A. A. Shestakova A. A. Shumilin A. V. Travov Yu. B. Pavlyukov, R. B. Zaripov. 2017. The impact of radar data assimilation on atmosphere state analysis in the Moscow region. Russian Meteorology and Hydrology 42 (2017), 357--368. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  38. Christopher Zach, Thomas Pock, and Horst Bischof. 2007. A duality based approach for realtime TV-L 1 optical flow. In Joint Pattern Recognition Symposium. Springer, 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhengxin Zhang, Qingjie Liu, and YunhongWang. 2018. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters 15, 5 (2018), 749--753.Google ScholarGoogle ScholarCross RefCross Ref
  40. Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, XiaogangWang, and Jiaya Jia. 2017. Pyramid scene parsing network. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2881--2890.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Precipitation Nowcasting with Satellite Imagery

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
            July 2019
            3305 pages
            ISBN:9781450362016
            DOI:10.1145/3292500

            Copyright © 2019 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 July 2019

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            KDD '19 Paper Acceptance Rate110of1,200submissions,9%Overall Acceptance Rate1,133of8,635submissions,13%

            Upcoming Conference

            KDD '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader