skip to main content
10.1145/3292500.3332295acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
tutorial

Mining Temporal Networks

Published:25 July 2019Publication History

ABSTRACT

Networks (or graphs) are used to represent and analyze large datasets of objects and their relations. Naturally, real-world networks have a temporal component: for instance, interactions between objects have a timestamp and a duration. In this tutorial we present models and algorithms for mining temporal networks, i.e., network data with temporal information. We overview different models used to represent temporal networks. We highlight the main differences between static and temporal networks, and discuss the challenges arising from introducing the temporal dimension in the network representation. We present recent papers addressing the most well-studied problems in the setting of temporal networks, including computation of centrality measures, motif detection and counting, community detection and monitoring, event and anomaly detection, analysis of epidemic processes and influence spreading, network summarization, and structure prediction.

Skip Supplemental Material Section

Supplemental Material

p3225-rozenshtein_part1.mp4

mp4

3.9 GB

p3225-rozenshtein_part2.mp4

mp4

7.3 GB

References

  1. C. Aggarwal and K. Subbian. Evolutionary network analysis: A survey. ACM Computing Surveys (CSUR), 47 (1): 10, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. C. Aggarwal and H. Wang. Graph data management and mining: A survey of algorithms and applications. In Managing and mining graph data, pages 13--68. Springer, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and description: a survey. Data mining and knowledge discovery, 29 (3): 626--688, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. et al.(2016)}barabasi2016networkA.-L. Barabási et al. Network science. Cambridge university press, 2016.Google ScholarGoogle Scholar
  5. M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining graph evolution rules. In ECML PKDD, pages 115--130. Springer, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27 (5): 387--408, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Cordeiro and J. Gama. Online social networks event detection: a survey. In Solving Large Scale Learning Tasks. Challenges and Algorithms, pages 1--41. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  8. Y. Dhote, N. Mishra, and S. Sharma. Survey and analysis of temporal link prediction in online social networks. In 2013 International Conference on Advances in Computing, Communications and Informatics, pages 1178--1183. IEEE, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Goswami and A. Kumar. A survey of event detection techniques in online social networks. Social Network Analysis and Mining, 6 (1): 107, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. A. Hill and D. Braha. Dynamic model of time-dependent complex networks. Physical Review E, 82 (4): 046105, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. P. Holme. Epidemiologically optimal static networks from temporal network data. PLoS computational biology, 9 (7): e1003142, 2013.Google ScholarGoogle Scholar
  12. P. Holme. Modern temporal network theory: a colloquium. The European Physical Journal B, 88 (9): 234, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  13. (2012)}holme2012temporalP. Holme and J. Saram"aki. Temporal networks. Physics reports, 519 (3): 97--125, 2012.Google ScholarGoogle Scholar
  14. H.-P. Hsieh and C.-T. Li. Mining temporal subgraph patterns in heterogeneous information networks. In 2010 IEEE Second International Conference on Social Computing, pages 282--287. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Impedovo, C. Loglisci, and M. Ceci. Temporal pattern mining from evolving networks. arXiv preprint arXiv:1709.06772, 2017.Google ScholarGoogle Scholar
  16. H.-H. Jo, R. K. Pan, and K. Kaski. Emergence of bursts and communities in evolving weighted networks. PloS one, 6 (8): e22687, 2011.Google ScholarGoogle Scholar
  17. R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. In Link mining: models, algorithms, and applications, pages 337--357. Springer, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Kumar, T. Calders, A. Gionis, and N. Tatti. Maintaining sliding-window neighborhood profiles in interaction networks. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 719--735, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8 (1): 61, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. Lee, L. E. Rocha, F. Liljeros, and P. Holme. Exploiting temporal network structures of human interaction to effectively immunize populations. PloS one, 7 (5), 2012.Google ScholarGoogle Scholar
  21. Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods and applications: A survey. ACM Computing Surveys (CSUR), 51 (3): 62, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43 (1): 9--20, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. O. Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics, 12 (4): 239--280, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Nurwidyantoro and E. Winarko. Event detection in social media: A survey. In International Conference on ICT for Smart Society, pages 1--5. IEEE, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  25. opf(2012)}rodriguez2012influenceM. G. Rodriguez and B. Schölkopf. Influence maximization in continuous time diffusion networks. arXiv preprint arXiv:1205.1682, 2012.Google ScholarGoogle Scholar
  26. G. Rossetti and R. Cazabet. Community discovery in dynamic networks: a survey. ACM Computing Surveys (CSUR), 51 (2): 35, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Rozenshtein. Methods for analyzing temporal networks. PhD thesis, Aalto University, Helsinki, Finland, 2018.Google ScholarGoogle Scholar
  28. P. Rozenshtein, A. Anagnostopoulos, A. Gionis, and N. Tatti. Event detection in activity networks. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1176--1185. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Rozenshtein, A. Gionis, B. A. Prakash, and J. Vreeken. Reconstructing an epidemic over time. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1835--1844. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rozenshtein, Tatti, and Gionis}rozenshtein2017findingP. Rozenshtein, N. Tatti, and A. Gionis. Finding dynamic dense subgraphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 11 (3): 27, 2017 a . Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rozenshtein, Tatti, and Gionis}rozenshtein2017networkP. Rozenshtein, N. Tatti, and A. Gionis. The network-untangling problem: From interactions to activity timelines. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 701--716. Springer, 2017 b .Google ScholarGoogle ScholarCross RefCross Ref
  32. P. Rozenshtein, F. Bonchi, A. Gionis, M. Sozio, and N. Tatti. Finding events in temporal networks: Segmentation meets densest-subgraph discovery. In 2018 IEEE International Conference on Data Mining (ICDM), pages 397--406. IEEE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  33. , and Borgwardt}wackersreuther2010frequentB. Wackersreuther, P. Wackersreuther, A. Oswald, C. Böhm, and K. M. Borgwardt. Frequent subgraph discovery in dynamic networks. In Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pages 155--162. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. H. Xiao, P. Rozenshtein, and A. Gionis. Discovering topically-and temporally-coherent events in interaction networks. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 690--705. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Xiao, P. Rozenshtein, N. Tatti, and A. Gionis. Reconstructing a cascade from temporal observations. In Proceedings of the 2018 SIAM International Conference on Data Mining, pages 666--674. SIAM, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  36. L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan. Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge and Data Engineering, 28 (10): 2765--2777, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mining Temporal Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
        July 2019
        3305 pages
        ISBN:9781450362016
        DOI:10.1145/3292500

        Copyright © 2019 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 July 2019

        Check for updates

        Qualifiers

        • tutorial

        Acceptance Rates

        KDD '19 Paper Acceptance Rate110of1,200submissions,9%Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader