skip to main content
research-article

Spotlights and Soundscapes: On the Design of Mixed Reality Auditory Environments for Persons with Visual Impairment

Published:25 April 2020Publication History
Skip Abstract Section

Abstract

For persons with visual impairment, forming cognitive maps of unfamiliar interior spaces can be challenging. Various technical developments have converged to make it feasible, without specialized equipment, to represent a variety of useful landmark objects via spatial audio, rather than solely dispensing route information. Although such systems could be key to facilitating cognitive map formation, high-density auditory environments must be crafted carefully to avoid overloading the listener. This article recounts a set of research exercises with potential users, in which the optimization of such systems was explored. In Experiment 1, a virtual reality environment was used to rapidly prototype and adjust the auditory environment in response to participant comments. In Experiment 2, three variants of the system were evaluated in terms of their effectiveness in a real-world building. This methodology revealed a variety of optimization approaches and recommendations for designing dense mixed-reality auditory environments aimed at supporting cognitive map formation by visually impaired persons.

References

  1. D. Pascolini and S. Mariotti. 2012. Global estimates of visual impairment: 2010. Brit. J. Ophthalmol. 96, 5 (2012), 614--618.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. M. Loomis, R. G. Golledge, and R. L. Klatzky. 2001. GPS-based navigation systems for the visually impaired. In Fundamentals of Wearable Computers and Augmented Reality, W. Barfield and T. Caudell, Eds. CRC Press, Boca Raton, FL, 429--446.Google ScholarGoogle Scholar
  3. R. Imrie and P. Hall. 2001. Inclusive Design: Designing and Developing Accessible Environments. Spon Press, London.Google ScholarGoogle Scholar
  4. U. R. Roentgen, G. J. Gelderblom, and L. P. de Witte. 2012. User evaluation of two electronic mobility aids for persons who are visually impaired: A quasi- experimental study using a standardized mobility course. Assist. Technol. 24, 2 (2012), 110--120.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. G. Long and N. A. Guidice. 2010. Establishing and maintaining orientation for mobility. In Foundations of Orientation and Mobility, 3rd ed., B. B. Blasch, W. R. Wiener, and R. L. Welsh, Eds. American Foundation for the Blind, NY, 45--62.Google ScholarGoogle Scholar
  6. B. B. Blasch, W. R. Wiener, and R. L. Welsh. 1997. Foundations of Orientation and Mobility, 2nd ed. American Foundation for the Blind, NY.Google ScholarGoogle Scholar
  7. J. O'keefe and D. H. Conway. 1978. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res 31, 4 (1978), 573--590.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. G. Golledge. 1987. Environmental cognition. altman. Handbook Environ. Psychol. (1987), 131--174.Google ScholarGoogle Scholar
  9. R. Yaagoubi, G. Edwards, T. Badard, and M. A. Mostafavi. 2012. Enhancing the mental representations of space used by blind pedestrians, based on an image schemata model. Cogn. Process. 13, 4 (2012), 333--347.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. W. Siegel and S. H. White. 1975. The development of spatial representations of large-scale environments. In Advances in Child Development and Behavior, W. Reese, Ed. Academic Press, NY, 9--55.Google ScholarGoogle Scholar
  11. H. Couclelis, R. G. Golledge, N. Gale, and W. Tobler. 1987. Exploring the anchor-point hypothesis of spatial cognition. J. Environ. Psychol 7, 2 (1987), 99--122.Google ScholarGoogle ScholarCross RefCross Ref
  12. V. Coroama and F. Röthenbacher. 2003. The chatty environment--providing everyday independence to the visually impaired. In Proceedings of the Workshop on Ubiquitous Computing for Pervasive Healthcare Applications at UbiComp.Google ScholarGoogle Scholar
  13. M. Raubal and M. Swobodinsky. 2009. An indoor routing algorithm for the blind: Development and comparison to a routing algorithm for the sighted. Int. J. Geogr. Info. Sci. 23, 10 (2009), 1315--1343.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Ivanov. 2012. RSNAVI: An RFID-based context-aware indoor navigation system for the blind rosen. In Proceedings of the International Conference on Computer Systems and Technologies (CompSysTech’12). 313--320.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Kacorri, E. Ohn-Bar, K. M. Kitani, and C. Asakawa. 2018. Environmental factors in indoor navigation based on real-world trajectories of blind users. In Proceedings of the CHI Conference on Human Factors in Computing Systems. 56.Google ScholarGoogle Scholar
  16. R. M. Kitchin, M. Blades, and R. G. Golledge. 1997. Understanding spatial concepts at the geographic scale without the use of vision. Progr. Human Geogr. 21, 2 (1997), 225--242Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Cheung, D. Ball, M. Milford, G. Wyeth, and J. Wiles. 2012. Maintaining a cognitive map in darkness: The need to fuse boundary knowledge with path integration. PLoS Comput. Biol. 8, 8 (2012), 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  18. V. R. Schinazi and R. A. Epstein. 2010. Neural correlates of real-world route learning. Neuroimage 53, 2 (2010), 725--735.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. R. Montello. 1998. A new framework for understanding the acquisition of spatial knowledge in large-scale environments. Spatial Temporal Reason. Geogr. Info. Syst. (1998) 143--154.Google ScholarGoogle Scholar
  20. V. R. Schinazi, T. Thrash, and D.-R. Chebat. 2016. Spatial navigation by congenitally blind individuals. WIREs Cogn. Sci. 7, 1 (2016), 37--58Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Kupers, D. R. Chebat, K. H. Madsen, O. B. Paulson, and M. Ptito. 2010. Neural correlates of virtual route recognition in congenital blindness. Proc. Natl. Acad. Sci. U.S.A. 107, 28 (2010), 12716--12721.Google ScholarGoogle ScholarCross RefCross Ref
  22. T. Wolbers, R. L. Klatzky, J. M. Loomis, M. G. Wutte, and N. A. Giudice. 2011. Modality-independent coding of spatial layout in the human brain. Curr. Biol. 21, 11 (2011), 984--989.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Iachini, G. Ruggiero, and F. Ruotolo. 2014. Does blindness affect egocentric and allocentric frames of reference in small and large scale spaces? Behav. Brain Res. 273 (2014), 73--81.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Rieser, J. J. Hill, E. W. Talor, C. R. Bradfield, and A. Rosen. 1992. Visual experience, visual field size, and the development of nonvisual sensitivity to the spatial structure of outdoor neighborhoods explored by walking. J. Exper. Psychol.: Gen. 121, 2 (1992).Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Pasqualotto and M. J. Proulx. 2012. The role of visual experience for the neural basis of spatial cognition. Neurosci. Biobehav. Rev. 36, 4 (2012), 1179--1187.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Schmidt, C. Tinti, M. Fantino, I. C. Mammarella, and C. Cornoldi. 2013. Spatial representations in blind people: The role of strategies and mobility skills. Acta Psychologica 142, 1 (2013), 43--50.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. M. Tellevik. 1992. Influence of spatial exploration patterns on cognitive mapping by blindfolded sighted persons. J. Visual Impair. Blind. (1992).Google ScholarGoogle Scholar
  28. F. J. J. M. Steyvers and A. C. Kooijman. 2009. Using route and survey information to generate cognitive maps: Differences between normally sighted and visually impaired individuals. Appl. Cogn. Psychol. 23, 2 (2009), 223--235.Google ScholarGoogle ScholarCross RefCross Ref
  29. U. R. Roentgen, G. J. Gelderblom, M. Soede, and L. P. de Witte. 2008. Inventory of electronic mobility aids for persons with visual impairments: A literature review. J. Visual Impair. Blind. 102, 11 (2008), 702--724.Google ScholarGoogle ScholarCross RefCross Ref
  30. P. Vera, D. Zenteno, and J. Salas. 2014. A smartphone-based virtual white cane. Pattern Anal. Appl 17, 3 (2014), 623--632.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. R. Sanz, B. R. Mezcua, J. M. S. Pena, and B. N. Walker. 2014. Scenes and images into sounds: A taxonomy of image sonification methods for mobility applications. J. Audio Engineer. Soc. 62, 3 (2014), 161--171.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. D. Heyes. 1983. The sonic pathfinder—a new travel aid for the blind. In High Technology Aids for the Disabled. Elsevier, 165--171.Google ScholarGoogle Scholar
  33. S. M. F. Hosseini, A. Riener, R. Bose, and M. Jeon. 2014. Listen2dRoom: Helping visually impaired people navigate indoor environments using an ultrasonic sensor-based orientation aid.Google ScholarGoogle Scholar
  34. D. Jain. 2014. Path-guided indoor navigation for the visually impaired using minimal building retrofitting. In Proceedings of the 16th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’14). 225--232.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Ganz, J. Schafer, S. Gandhi, E. Puleo, C. Wilson, and M. Robertson. 2012. PERCEPT indoor navigation system for the blind and visually impaired: Architecture and experimentation. Int. J. Telemed. Appl. 1--12, 2012.Google ScholarGoogle Scholar
  36. S. Chumkamon, P. Tuvaphanthaphiphat, and P. Keeratiwintakorn. 2008. A blind navigation system using RFID for indoor environments. In Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON’08). 765--768.Google ScholarGoogle Scholar
  37. Y. Sonnenblick. 1998. An indoor navigation system for blind individuals. In Proceedings of the 13th Annual Conference on Technology and Persons with Disabilities. 215--224.Google ScholarGoogle Scholar
  38. L. Šimunović, V. Anđelić, and I. Pavlinušić. 2012. Blind people guidance system. In Proceedings of the 23rd Central European Conference on Information and Intelligent Systems. 427--493.Google ScholarGoogle Scholar
  39. A. Meliones and D. Sampson. 2018. Blind museumtourer: A system for self-guided tours in museums and blind indoor navigation. Technologies 6, 1 (2018), 1--31.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. Nicholson, V. Kulyukin, and D. Coster. 2009. ShopTalk: Independent blind shopping through verbal route directions and barcode scans. Open Rehab. J. 2, 1 (2009), 11--23.Google ScholarGoogle ScholarCross RefCross Ref
  41. P.-A. Quiñones, T. C. Greene, R. Yang, and M. W. Newman. 2011. Supporting visually impaired navigation: A needs-finding study. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’11). 1645--1650.Google ScholarGoogle Scholar
  42. S. Wenqin, J. Wei, and C. Jian. 2011. A machine vision-based navigation system for the blind. In Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE’11) 81--85.Google ScholarGoogle Scholar
  43. R. Cheng, K. Wang, K. Yang, and X. Zhao. 2015. A ground and obstacle detection algorithm for the visually impaired. In Proceedings of the IET International Conference on Biomedical Image and Signal Processing. 1--6.Google ScholarGoogle Scholar
  44. A. Rodríguez, J. J. Yebes, P. F. Alcantarilla, L. M. Bergasa, J. Almazán, and A. Cela. 2012. Assisting the visually impaired: Obstacle detection and warning system by acoustic feedback. Sensors 12, 12 (2012), 17476--17496.Google ScholarGoogle ScholarCross RefCross Ref
  45. G. Garcia and A. Nahapetian. 2015. Demonstration paper: Wearable computing for image-based indoor navigation of the visually impaired. In Proceedings of the Conference on Wireless Health (WH’15). 1--6.Google ScholarGoogle Scholar
  46. H.-H. Pham, T.-L. Le, and N. Vuillerme. 2016. Real-time obstacle detection system in indoor environment for the visually impaired using microsoft kinect sensor. J. Sensors 2016, 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  47. R. Jafri, S. A. Ali, H. R. Arabnia, and S. Fatima. 2014. Computer vision-based object recognition for the visually impaired in an indoors environment: A survey. Visual Comput. 30, 11 (2014), 1197--1222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Hub, J. Diepstraten, and T. Ertl. 2004. Design and development of an indoor navigation and object identification system for the blind. In Proceedings of the ACM SIGACCESS Conference on Accessibility and Computing (ASSETS’04). 77--78, 147--152.Google ScholarGoogle Scholar
  49. B. S. Tjan, P. J. Beckmann, R. Roy, N. A. Giudice, and G. E. Legge. 2005. Digital sign system for indoor wayfinding for the visually impaired. In Proceedings of the 1st IEEE Workshop on Computer Vision Applications for the Visually Impaired (CVPR’05).Google ScholarGoogle Scholar
  50. W. Bartyna et al. 2005. Blind-enT: Making objects visible for blind people. In Int. Congress Ser. 1282 (2005), 974--979.Google ScholarGoogle ScholarCross RefCross Ref
  51. O. Lahav and D. Mioduser. 2008. Construction of cognitive maps of unknown spaces using a multi-sensory virtual environment for people who are blind. Comput. Hum. Behav. 24, 3 (2008), 1139--1155.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. J. Guerreiro, D. Ahmetovic, K. M. Kitani, and C. Asakawa. 2017. Virtual navigation for blind people. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility. 280--289.Google ScholarGoogle Scholar
  53. L. Picinali, B. F. G. Katz, A. Afonso, and M. Denis. 2011. Acquisition of spatial knowledge of architectural spaces via active and passive aural explorations by the blind. In Proceedings of Forum Acusticum. 1311--1316.Google ScholarGoogle Scholar
  54. A. Cobo, N. E. Guerrón, C. Martín, F. del Pozo, and J. J. Serrano. 2017. Differences between blind people's cognitive maps after proximity and distant exploration of virtual environments. Comput. Hum. Behav. 77 (2017), 294--308.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. O. Lahav, D. W. Schloerb, and M. A. Srinivasan. 2012. Newly blind persons using virtual environment system in a traditional orientation and mobility rehabilitation program: a case study. Disabil. Rehab.: Assist. Technol. 7, 5 (2012), 420--435.Google ScholarGoogle ScholarCross RefCross Ref
  56. O. Lahav, D. Schloerb, S. Kumar, and M. Srinivasan. 2012. A virtual environment for people who are blind--a usability study. J. Assist. Technol. 6, 1 (2012), 38--52.Google ScholarGoogle ScholarCross RefCross Ref
  57. L. B. Merabet, E. C. Connors, M. A. Halko, and J. Sánchez. 2012. Teaching the blind to find their way by playing video games. PLoS One 7, 9 (2012), 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  58. E. C. Connors, E. R. Chrastil, J. Sanchez, and L. B. Merabet. 2014. Virtual environments for the transfer of navigation skills in the blind: A comparison of directed instruction vs. video game-based learning approaches. Front. Hum. Neurosci. 8, (2014), 1--13.Google ScholarGoogle Scholar
  59. T. Amemiya, J. Yamashita, K. Hirota, and M. Hirose. 2004. Virtual leading blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. In Proceedings of the IEEE Conference on Virtual Reality. 165--287.Google ScholarGoogle Scholar
  60. J. L. González-Mora, A. Rodriguez-Hernandez, E. Burunat, F. Martin, and M. A. Castellano. 2006. Seeing the world by hearing: Virtual acoustic space (VAS) a new space perception system for blind people. In Proceedings of the Conference on Information and Communication Technologies (ICTTA’06). 837--842.Google ScholarGoogle Scholar
  61. B. F. G. Katz et al. 2012. NAVIG: Guidance system for the visually impaired using virtual augmented reality. Technol. Disabil. 24, 2 (2012), 163--178.Google ScholarGoogle ScholarCross RefCross Ref
  62. J. Wilson, B. N. Walker, J. Lindsay, C. Cambias, and F. Dellaert. 2007. Swan: System for wearable audio navigation. In Proceedings of the 11th IEEE International Symposium on Wearable Computers. 91--98.Google ScholarGoogle Scholar
  63. S. M. Oh, S. Tariq, B. N. Walker, and F. Dellaert. 2004. Map-based priors for localization.Google ScholarGoogle Scholar
  64. M. Nakajima and S. Haruyama. 2013. New indoor navigation system for visually impaired people using visible light communication. EURASIP J. Wireless Commun. Netw. 2013 1, 1--10.Google ScholarGoogle Scholar
  65. Y. Bai. 2014. A wearable indoor navigation system for blind and visually impaired individuals. University of Pittsburgh.Google ScholarGoogle Scholar
  66. S. M. Oh, G. Schildler, and F. Dellaert. 2006. Automatic acquisition of 4D urban models and proactive auditory service for enhanced user experience.Google ScholarGoogle Scholar
  67. E. B. Kaiser and M. Lawo. 2012. Wearable navigation system for the visually impaired and blind people. In Proceedings of the IEEE/ACIS 11th International Conference on Computer and Information Science (ICIS’12). 230--233.Google ScholarGoogle Scholar
  68. S. Lagüela, I. Dorado, M. Gesto, P. Arias, D. González-Aguilera, and H. Lorenzo. 2018. Behavior analysis of novel wearable indoor mapping system based on 3D-SLAM. Sensors 18, 3 (2018), 766Google ScholarGoogle ScholarCross RefCross Ref
  69. R. Yaagoubi, T. Badard, and G. Edwards. 2009. Standards and spatial data infrastructures to help the navigation of blind pedestrian in urban areas. In Urban and Regional Data Management Alenka Krek, M. Rumor, S. Zlatanova, and E. M. Fendel, Eds. Taylor 8 Francis, London.Google ScholarGoogle Scholar
  70. W. Jeamwatthanachai, M. Wald, and G. Wills. 2016. Map data representation for indoor navigation. In Proceedings of the International Conference on Information Society (i-Society’16). 91--96.Google ScholarGoogle Scholar
  71. B. Schmitz, S. Becker, A. Blessing, and M. Großmann. 2011. Acquisition and presentation of diverse spatial context data for blind navigation. In Proceedings of the 12th IEEE International Conference on Mobile Data Management. Vol. 1, 276--284.Google ScholarGoogle Scholar
  72. G. R. White, G. Fitzpatrick, and G. McAllister. 2008. Toward accessible 3D virtual environments for the blind and visually impaired. In Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts (DIMEA’08). 134--141.Google ScholarGoogle Scholar
  73. J. R. Blum, M. Bouchard, and J. R. Cooperstock. 2011. What's around me? Spatialized audio augmented reality for blind users with a smartphone. In Proceedings of the International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services. 49--62.Google ScholarGoogle Scholar
  74. S. L. Joseph, X. Zhang, I. Dryanovski, J. Xiao, C. Yi, and Y. L. Tian. 2013. Semantic indoor navigation with a blind-user oriented augmented reality. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC’13). 3585--3591.Google ScholarGoogle Scholar
  75. M. Swaminathan, S. Pareddy, T. S. Sawant, and S. Agarwal. 2018. Video gaming for the vision impaired. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility. 465--467.Google ScholarGoogle Scholar
  76. D. Sato, U. Oh, K. Naito, H. Takagi, K. Kitani, and C. Asakawa. 2017. NavCog3: An evaluation of a smartphone-based blind indoor navigation assistant with semantic features in a large-scale environment. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’17). 270--279.Google ScholarGoogle Scholar
  77. A. S. Bregman. 1994. Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press.Google ScholarGoogle Scholar
  78. J. H. Schuett and B. N. Walker. 2013. Measuring comprehension in sonification tasks that have multiple data streams. In Proceedings of the 8th Audio Mostly Conference. 11.Google ScholarGoogle Scholar
  79. D. S. Brungart, P. S. Chang, B. D. Simpson, and D. Wang. 2009. Multitalker speech perception with ideal time-frequency segregation: Effects of voice characteristics and number of talkers. The J. Acoust. Soc. Amer. 125, 6 (2009), 4006--4022.Google ScholarGoogle ScholarCross RefCross Ref
  80. R. Cusack, J. Decks, G. Aikman, and R. P. Carlyon. 2004. Effects of location, frequency region, and time course of selective attention on auditory scene analysis. J. Exper. Psychol.: Human Percept. Perform. 30, 4 (2004), 643.Google ScholarGoogle ScholarCross RefCross Ref
  81. A. Vouloumanos, K. A. Kiehl, J. F. Werker, and P. F. Liddle. 2001. Detection of sounds in the auditory stream: Event-related fMRI evidence for differential activation to speech and nonspeech. J. Cogn. Neurosci. 13, 7 (2001), 994--1005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. T. Dingler, J. Lindsay, and B. N. Walker. 2008. Learnabiltiy of sound cues for environmental features: Auditory icons, earcons, spearcons, and speech. In Proceedings of the International Conference on Auditory Display (ICAD’08).Google ScholarGoogle Scholar
  83. B. G. Shinn-Cunningham, S. Santarelli, and N. Kopco. 2000. Tori of confusion: Binaural localization cues for sources within reach of a listener. J. Acoust. Soc. Amer. 107, 3 (2000), 1627--1636.Google ScholarGoogle ScholarCross RefCross Ref
  84. I. Reginster and G. Edwards. 2001. The concept and implementation of perceptual regions as hierarchical spatial units for evaluating environmental sensitivity. URISA J. 13, 1 (2001), 5--16.Google ScholarGoogle Scholar
  85. L. Hakobyan, J. Lumsden, D. O'Sullivan, and H. Bartlett. 2013. Mobile assistive technologies for the visually impaired. Surv. Ophthalmol. 58, 6 (2013), 513--528.Google ScholarGoogle ScholarCross RefCross Ref
  86. B. Chaudary, P. Pulli, and H. Chowdhry. 2015. Advanced navigation assistance aids for the visually impaired and blind persons. Enabl. Access Persons Visual Impair. 183 (2015).Google ScholarGoogle Scholar
  87. H. Paredes, H. Fernandes, P. Martins, and J. Barroso. 2013. Gathering the users’ needs in the development of assistive technology: A blind navigation system use case. In Proceedings of the International Conference on Universal Access in Human-Computer Interaction.Google ScholarGoogle Scholar
  88. B. N. Walker and J. Lindsay. 2005. Navigation performance in a virtual environment with bonephones. Human Factors 48, 2 (2005), 265--278.Google ScholarGoogle ScholarCross RefCross Ref
  89. M. Müller, T. Günther, D. Kammer, J. Wojdziak, S. Lorenz, and R. Groh. 2016. Smart prototyping-improving the evaluation of design concepts using virtual reality. In Proceedings of the International Conference on Virtual, Augmented and Mixed Reality. 47--58.Google ScholarGoogle Scholar
  90. A. Pasqualotto, C. M. Finucane, and F. N. Newell. 2013. Ambient visual information confers a context-specific, long-term benefit on memory for haptic scenes. Cognition 128, 3 (2013), 363--379.Google ScholarGoogle ScholarCross RefCross Ref
  91. J. Brooke. 1996. SUS-A quick and dirty usability scale. Usabil. Eval. Industry 189, 194 (1996), 4--7.Google ScholarGoogle Scholar
  92. B. J. Tomlinson, B. E. Noah, and B. N. Walker. 2018. BUZZ: An auditory interface user experience scale. In Proceedings of the CHI Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  93. P. Zahorik, P. Bangayan, V. Sundareswaran, K. Wang, and C. Tam. 2006. Perceptual recalibration in human sound localization: Learning to remediate front-back reversals. J. Acoust. Soc. Amer. 120, 1 (2006), 343--359.Google ScholarGoogle ScholarCross RefCross Ref
  94. C.-H. Yang, S.-L. Hwang, and J.-L. Wang. 2014. The design and evaluation of an auditory navigation system for blind and visually impaired. In Proceedings of the IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD’14). 342--345.Google ScholarGoogle ScholarCross RefCross Ref
  95. R. Ramloll, W. Yu, S. Brewster, B. Riedel, M. Burton, and G. Dimigen. 2000. Constructing sonified haptic line graphs for the blind student: First steps. In Proceedings of the 4th International ACM Conference on Assistive Technologies 17--25.Google ScholarGoogle Scholar
  96. O. Metatla, N. Bryan-Kinns, and T. Stockman. 2018. I hear you: Understanding awareness information exchange in an audio-only workspace. In Proceedings of the CHI Conference on Human Factors in Computing Systems. 546.Google ScholarGoogle Scholar
  97. W. W. Gaver. 1993. What in the world do we hear?: An ecological approach to auditory event perception. Ecol. Psychoacoust. 5, 1 (1993), 1--29.Google ScholarGoogle ScholarCross RefCross Ref
  98. S. S. Chawathe. 2009. Low-latency indoor localization using bluetooth beacons. In. Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems (ITSC’09). 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  99. S. G. Hart and L. E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology, vol. 52. Elsevier, 139--183.Google ScholarGoogle Scholar
  100. R. M. Kitchin and R. D. Jacobson. 1997. Techniques to collect and analyze the cognitive map knowledge of persons with visual impairment or blindness: Issues of validity. J. Visual Impair. Blind. 91, 4 (1997), 360--376.Google ScholarGoogle ScholarCross RefCross Ref
  101. D. Ahmetovic, J. Guerreiro, E. Ohn-Bar, K. M. Kitani, and C. Asakawa. 2019. Impact of expertise on interaction preferences for navigation assistance of visually impaired individuals. In Proceedings of the 16th Web For All Conference—Personalizing the Web (W4A’19).Google ScholarGoogle Scholar
  102. B. N. Walker and J. Lindsay. 2006. Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice. Hum. Factors 48, 2 (2006), 265--278.Google ScholarGoogle ScholarCross RefCross Ref
  103. J. P. Rauschecker. 1998. Parallel processing in the auditory cortex of primates. Audiol. Neurol. 3, 2--3, 86--103.Google ScholarGoogle Scholar
  104. S. G. Lomber and S. Malhotra. 2008. Double dissociation of “what” and “where” processing in auditory cortex. Nature Neurosci. 11, 5 (2008), 609.Google ScholarGoogle ScholarCross RefCross Ref
  105. J. Ahveninen et al. 2006. Task-modulated “what” and “where” pathways in human auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 103, 39 (2006), 14608--14613.Google ScholarGoogle ScholarCross RefCross Ref
  106. M. Adriani et al. 2003. Sound recognition and localization in man: Specialized cortical networks and effects of acute circumscribed lesions. Exper. Brain Res. 153, 4 (2003), 591--604.Google ScholarGoogle ScholarCross RefCross Ref
  107. D. J. Calder. 2010. Assistive technologies and the visually impaired: A digital ecosystem perspective. In Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spotlights and Soundscapes: On the Design of Mixed Reality Auditory Environments for Persons with Visual Impairment

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Accessible Computing
        ACM Transactions on Accessible Computing  Volume 13, Issue 2
        June 2020
        184 pages
        ISSN:1936-7228
        EISSN:1936-7236
        DOI:10.1145/3397192
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 April 2020
        • Accepted: 1 January 2020
        • Revised: 1 February 2019
        • Received: 1 February 2019
        Published in taccess Volume 13, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format