skip to main content
research-article

CNN-based Multiple Manipulation Detector Using Frequency Domain Features of Image Residuals

Authors Info & Claims
Published:31 May 2020Publication History
Skip Abstract Section

Abstract

Increasingly sophisticated image editing tools make it easy to modify images. Often these modifications are elaborate, convincing, and undetectable by even careful human inspection. These considerations have prompted the development of forensic algorithms and approaches to detect modifications done to an image. However, these detectors are model-driven (i.e., manipulation-specific) and the choice of a potent detector requires knowledge of the type of manipulation, something that cannot be known (a priori). Thus, the latest effort is directed towards developing model-free (i.e., generalized) detectors capable of detecting multiple manipulation types. In this article, we propose a novel detector capable of exposing seven different manipulation types in low-resolution compressed images. Our proposed approach is based on a two-layer convolutional neural network (CNN) to extract frequency domain features of image median filtered residual that are classified using two different classifiers—softmax and extremely randomized trees. Extensive experiments demonstrate the efficacy of proposed detector over existing state-of-the-art detectors.

References

  1. Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. 2018. MesoNet: A compact facial video forgery detection network. CoRR abs/1809.00888 (2018).Google ScholarGoogle Scholar
  2. M. Barni, A. Costanzo, E. Nowroozi, and B. Tondi. 2018. CNN based detection of generic contrast adjustment with jpeg post-processing. In Proceedings of the IEEE International Conference on Image Processing (ICIP’18). 3803--3807.Google ScholarGoogle Scholar
  3. Patrick Bas, Tomáš Filler, and Tomáš Pevný. 2011. Break Our Steganographic System: The Ins and Outs of Organizing BOSS. Springer, Berlin, 59--70. DOI:https://doi.org/10.1007/978-3-642-24178-9_5Google ScholarGoogle Scholar
  4. Patrick Bas and Teddy Furon. 2007. BOWS-2. Retrieved on May 2020 from http://bows2.ec-lille.fr/.Google ScholarGoogle Scholar
  5. Belhassen Bayar and Matthew C. Stamm. 2018. Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forens. Sec. 13 (2018), 2691--2706. Issue 11.Google ScholarGoogle ScholarCross RefCross Ref
  6. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gang Cao, Yao Zhao, Rongrong Ni, and Xuelong Li. 2014. Contrast enhancement-based forensics in digital images. IEEE Trans. Inf. Forens. Sec. 9, 3 (Mar. 2014), 515--525. DOI:https://doi.org/10.1109/TIFS.2014.2300937Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bolin Chen, Haodong Li, and Weiqi Luo. 2017. Image processing operations identification via convolutional neural network. CoRR abs/1709.02908 (2017).Google ScholarGoogle Scholar
  9. Chenglong Chen, Jiangqun Ni, and Jiwu Huang. 2013. Blind detection of median filtering in digital images: A difference domain based approach. IEEE Trans. Image Proc. 22, 12 (Dec. 2013), 4699--4710. DOI:https://doi.org/10.1109/TIP.2013.2277814Google ScholarGoogle Scholar
  10. Jiansheng Chen, Xiangui Kang, Ye Liu, and Z. J. Wang. 2015. Median filtering forensics based on convolutional neural networks. IEEE Sig. Proc. Lett. 22 (2015), 1849--1853.Google ScholarGoogle ScholarCross RefCross Ref
  11. Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015).Google ScholarGoogle Scholar
  12. Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. 2017. Recasting residual-based local descriptors as convolutional neural networks: An application to image forgery detection. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security (IH-MMSec’17). ACM, New York, NY, 159--164. DOI:https://doi.org/10.1145/3082031.3083247Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Yann Le Cun. 1988. A theoretical framework for back-propagation. In Proceedings of the 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski (Eds.). CMU, Pittsburg, PA, 21--28.Google ScholarGoogle Scholar
  14. Image Database. 2013. IEEE IFS-TC Image Forensics Challenge. Retrieved from http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=5.Google ScholarGoogle Scholar
  15. Burhan Ergen. 2016. Scale invariant and fixed-length feature extraction by integrating discrete cosine transform and autoregressive signal modeling for palmprint identification. Turk. J. Elect. Eng. Comput. Sci. 24 (Jan. 2016), 1768--1781. DOI:https://doi.org/10.3906/elk-1309-65Google ScholarGoogle Scholar
  16. W. Fan, K. Wang, and F. Cayre. 2015. General-purpose image forensics using patch likelihood under image statistical models. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS’15). 1--6. DOI:https://doi.org/10.1109/WIFS.2015.7368606Google ScholarGoogle Scholar
  17. Xiaoying Feng, Ingemar J. Cox, and Gwenaël J. Doërr. 2012. Normalized energy density-based forensic detection of resampled images. IEEE Trans. Multimedia 14, 3--1 (2012), 536--545. DOI:https://doi.org/10.1109/TMM.2012.2191946Google ScholarGoogle Scholar
  18. J. Fridrich and J. Kodovsky. 2012. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forens. Sec. 7, 3 (June 2012), 868--882. DOI:https://doi.org/10.1109/TIFS.2012.2190402Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Thomas Gloe and Rainer Böhme. 2010. The “Dresden Image Database” for benchmarking digital image forensics. In Proceedings of the ACM Symposium on Applied Computing (SAC’10). ACM, New York, NY, 1584--1590. DOI:https://doi.org/10.1145/1774088.1774427Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Abhinav Gupta and Divya Singhal. 2018. Analytical global median filtering forensics based on moment histograms. ACM Trans. Multimedia Comput. Commun. Applic. 14, 2 (Apr. 2018), 44:1--44:23. DOI:https://doi.org/10.1145/3176650Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. He and J. Sun. 2015. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15). 5353--5360. DOI:https://doi.org/10.1109/CVPR.2015.7299173Google ScholarGoogle Scholar
  22. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’15). IEEE Computer Society, Washington, DC, 1026--1034. DOI:https://doi.org/10.1109/ICCV.2015.123Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lars Hertel, Huy Phan, and Alfred Mertins. 2016. Comparing time and frequency domain for audio event recognition using deep learning. CoRR abs/1603.05824 (2016).Google ScholarGoogle Scholar
  24. Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580 (2012).Google ScholarGoogle Scholar
  25. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 448--456. Retrieved from http://jmlr.org/proceedings/papers/v37/ioffe15.pdf.Google ScholarGoogle Scholar
  26. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia (MM’14). ACM, New York, NY, 675--678. DOI:https://doi.org/10.1145/2647868.2654889Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. L. Kang, J. Kumar, P. Ye, Y. Li, and D. Doermann. 2014. Convolutional neural networks for document image classification. In Proceedings of the 22nd International Conference on Pattern Recognition. 3168--3172. DOI:https://doi.org/10.1109/ICPR.2014.546Google ScholarGoogle Scholar
  28. Xiangui Kang, Matthew C. Stamm, Anjie Peng, and K. J. Ray Liu. 2013. Robust median filtering forensics using an autoregressive model. IEEE Trans. Inf. Forens. Sec. 8, 9 (Sept. 2013), 1456--1468. DOI:https://doi.org/10.1109/TIFS.2013.2273394Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Matthias Kirchner and Jessica Fridrich. 2010. On detection of median filtering in digital images. In Proc. SPIE Media Forens. Sec. II, Vol. 7541. SPIE, 754110--754110--12. DOI:https://doi.org/10.1117/12.839100Google ScholarGoogle Scholar
  30. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097--1105. Retrieved from DOI:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yann LeCun and Yoshua Bengio. 1998. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge, MA, 255--258. Retrieved from http://dl.acm.org/citation.cfm?id=303568.303704.Google ScholarGoogle Scholar
  32. Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. 1998. Efficient BackProp. In Neural Networks: Tricks of the Trade, This Book Is an Outgrowth of a 1996 NIPS Workshop. Springer-Verlag, London, UK, 9--50. Retrieved from http://dl.acm.org/citation.cfm?id=645754.668382.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Lee, T. Chen, L. Yu, and C. Lai. 2018. Image classification based on the boost convolutional neural network. IEEE Access 6 (2018), 12755--12768. DOI:https://doi.org/10.1109/ACCESS.2018.2796722Google ScholarGoogle ScholarCross RefCross Ref
  34. Haodong Li, Weiqi Luo, Xiaoqing Qiu, and Jiwu Huang. 2018. Identification of various image operations using residual-based features. IEEE Trans. Circ. Syst. Video Technol. 28, 1 (2018), 31--45. DOI:https://doi.org/10.1109/TCSVT.2016.2599849Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML Workshop on Deep Learning for Audio, Speech, and Language Processing.Google ScholarGoogle Scholar
  36. Aravindh Mahendran and Andrea Vedaldi. 2016. Visualizing deep convolutional neural networks using natural pre-images. Int. J. Comput. Vision 120, 3 (Dec. 2016), 233--255. DOI:https://doi.org/10.1007/s11263-016-0911-8Google ScholarGoogle ScholarCross RefCross Ref
  37. USDA NRCS. 2014. Natural Resources Conservation Service Photo Gallery, United States Department of Agriculture. Retrieved from http://plants.usda.gov/.Google ScholarGoogle Scholar
  38. C. Pasquini, P. Schöttle, R. Böhme, G. Boato, and F. Pèrez-Gonzàlez. June 2016. Forensics of high quality and nearly identical jpeg image re-compression. InProceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (IHMMSec’16). 11--21.Google ScholarGoogle Scholar
  39. Tomàš Pevnỳ, Patrick Bas, and Jessica Fridrich. 2010. Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forens. Sec. 5, 2 (June 2010), 215--224. DOI:https://doi.org/10.1109/TIFS.2010.2045842Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Alin C. Popescu and Hany Farid. 2005. Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Sig. Proc. 53, 2 (Feb. 2005), 758--767. DOI:https://doi.org/10.1109/TSP.2004.839932Google ScholarGoogle ScholarCross RefCross Ref
  41. Xiaoqing Qiu, Haodong Li, Weiqi Luo, and Jiwu Huang. 2014. A universal image forensic strategy based on steganalytic model. In Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security (IH-MMSec’14). ACM, New York, NY, 165--170. DOI:https://doi.org/10.1145/2600918.2600941Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. Ann. Math. Statist. 22, 3 (9 1951), 400--407. DOI:https://doi.org/10.1214/aoms/1177729586Google ScholarGoogle Scholar
  43. Joshua Rothman. 2018. In the age of A.I., is seeing still believing? The New Yorker (12 Nov. 2018). Retrieved from https://www.newyorker.com/magazine/2018/11/12/in-the-age-of-ai-is-seeing-still-believing.Google ScholarGoogle Scholar
  44. Gerald Schaefer and Michal Stich. 2003. UCID: An uncompressed color image database. In Proc. SPIE, Vol. 5307. SPIE, 472--480. DOI:https://doi.org/10.1117/12.525375Google ScholarGoogle Scholar
  45. Dominik Scherer, Andreas Müller, and Sven Behnke. 2010. Evaluation of pooling operations in convolutional architectures for object recognition. In Proceedings of the 20th International Conference on Artificial Neural Networks: Part III (ICANN’10). Springer-Verlag, 92--101. Retrieved from DOI:http://dl.acm.org/citation.cfm?id=1886436.1886447Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yun Q. Shi, Patchara Sutthiwan, and Licong Chen. 2013. Textural features for steganalysis. In Proceedings of the 14th International Conference on Information Hiding (IH’12). Springer-Verlag, 63--77. DOI:https://doi.org/10.1007/978-3-642-36373-3_5Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Matthew C. Stamm and K. J. Ray Liu. 2010. Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans. Inf. Forens. Sec. 5, 3 (Sept. 2010), 492--506. DOI:https://doi.org/10.1109/TIFS.2010.2053202Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. C. Stamm, M. Wu, and K. J. R. Liu. 2013. Information forensics: An overview of the first decade. IEEE Access 1 (2013), 167--200. DOI:https://doi.org/10.1109/ACCESS.2013.2260814Google ScholarGoogle ScholarCross RefCross Ref
  49. C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), Vol. 00. 1--9. DOI:https://doi.org/10.1109/CVPR.2015.7298594Google ScholarGoogle Scholar
  50. Hongshen Tang, Rongrong Ni, Yao Zhao, and Xiaolong Li. 2017. Detection of various image operations based on CNN. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA-ASC’17). 1479--1485. DOI:https://doi.org/10.1109/APSIPA.2017.8282267Google ScholarGoogle ScholarCross RefCross Ref
  51. Hongshen Tang, Rongrong Ni, Yao Zhao, and Xiaolong Li. 2018. Median filtering detection of small-size image based on CNN. J. Vis. Commun. Image Repres. 51 (2018), 162--168. DOI:https://doi.org/10.1016/j.jvcir.2018.01.011Google ScholarGoogle ScholarCross RefCross Ref
  52. Thanh Hai Thai, Rèmi Cogranne, Florent Retraint, and Thi-Ngoc-Canh Doan. 2017. JPEG quantization step estimation and its applications to digital image forensics. IEEE Trans. Inf. Forens. Sec. 12, 1 (Jan. 2017), 123--133. DOI:https://doi.org/10.1109/TIFS.2016.2604208Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Toshev and C. Szegedy. 2014. DeepPose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1653--1660. DOI:https://doi.org/10.1109/CVPR.2014.214Google ScholarGoogle Scholar
  54. H. K. Vydana and A. K. Vuppala. 2017. Investigative study of various activation functions for speech recognition. In Proceedings of the 23rd National Conference on Communications (NCC’17). 1--5. DOI:https://doi.org/10.1109/NCC.2017.8077043Google ScholarGoogle Scholar
  55. Dong-ping Wang, Tiegang Gao, and Fusheng Yang. 2018. A forensic algorithm against median filtering based on coefficients of image blocks in frequency domain. Multimedia Tools Applic. 77 (29 Jan. 2018). DOI:https://doi.org/10.1007/s11042-018-5651-zGoogle ScholarGoogle Scholar
  56. Qing Wang and Rong Zhang. 2016. Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Sec. 2016, 1 (10. Oct 2016), 23. DOI:https://doi.org/10.1186/s13635-016-0047-yGoogle ScholarGoogle Scholar
  57. Pengpeng Yang, Rongrong Ni, Yao Zhao, Gang Cao, Haorui Wu, and Wei Zhao. 2018. Robust contrast enhancement forensics using convolutional neural networks. CoRR abs/1803.04749 (2018).Google ScholarGoogle Scholar
  58. S. Yu, Y. Cheng, L. Xie, and S. Li. 2017. Fully convolutional networks for action recognition. IET Comput. Vis. 11, 8 (2017), 744--749. DOI:https://doi.org/10.1049/iet-cvi.2017.0005Google ScholarGoogle ScholarCross RefCross Ref
  59. Hai Dong Yuan. 2011. Blind forensics of median filtering in digital images. IEEE Trans. Inf. Forens. Sec. 6, 4 (Dec. 2011), 1335--1345. DOI:https://doi.org/10.1109/TIFS.2011.2161761Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis. 2018. Learning rich features for image manipulation detection. CoRR abs/1805.04953 (2018).Google ScholarGoogle Scholar

Index Terms

  1. CNN-based Multiple Manipulation Detector Using Frequency Domain Features of Image Residuals

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Intelligent Systems and Technology
      ACM Transactions on Intelligent Systems and Technology  Volume 11, Issue 4
      Survey Paper and Regular Paper
      August 2020
      358 pages
      ISSN:2157-6904
      EISSN:2157-6912
      DOI:10.1145/3401889
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 31 May 2020
      • Online AM: 7 May 2020
      • Revised: 1 March 2020
      • Accepted: 1 March 2020
      • Received: 1 December 2019
      Published in tist Volume 11, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format