skip to main content
research-article
Public Access

Edge Estimation with Independent Set Oracles

Published:16 September 2020Publication History
Skip Abstract Section

Abstract

We study the task of estimating the number of edges in a graph, where the access to the graph is provided via an independent set oracle. Independent set queries draw motivation from group testing and have applications to the complexity of decision versus counting problems. We give two algorithms to estimate the number of edges in an n-vertex graph, using (i) polylog(n) bipartite independent set queries or (ii) n2/3 polylog(n) independent set queries.

References

  1. Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee. 2018. Sublinear-time algorithms for counting star subgraphs via edge sampling. Algorithmica 80, 2 (2018), 668--697. DOI:https://doi.org/10.1007/s00453-017-0287-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Noga Alon and Vera Asodi. 2005. Learning a hidden subgraph. SIAM Journal on Discrete Mathematics 18, 4 (2005), 697–712.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. 2004. Learning a hidden matching. SIAM J. Comput. 33, 2 (2004), 487–501.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dana Angluin and Jiang Chen. 2006. Learning a hidden hypergraph. Journal of Machine Learning Research 7, Oct. (2006), 2215–2236.Google ScholarGoogle Scholar
  5. Dana Angluin and Jiang Chen. 2008. Learning a hidden graph using O(log n) queries per edge. J. Comput. Syst. Sci. 74, 4 (June 2008), 546–556. DOI:https://doi.org/10.1016/j.jcss.2007.06.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Aronov and S. Har-Peled. 2008. On approximating the depth and related problems. SIAM Journal on Computing 38, 3 (2008), 899--921. DOI:https://doi.org/10.1137/060669474Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Beame, S. Har-Peled, S. Natarajan Ramamoorthy, C. Rashtchian, and M. Sinha. 2018. Edge estimation with independent set oracles. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), A. R. Karlin (Ed.). Leibniz International Proceedings in Informatics (LIPIcs), Vol. 94. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 38:1–38:21. DOI:https://doi.org/10.4230/LIPIcs.ITCS.2018.38Google ScholarGoogle Scholar
  8. I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. 2013. Comparing the strength of query types in property testing: The case of -colorability. Computational Complexity 22, 1 (2013), 89--135. DOI:https://doi.org/10.1007/s00037-012-0048-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. 2019. Hyperedge estimation using polylogarithmic subset queries. arxiv:1908.04196.Google ScholarGoogle Scholar
  10. Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. 2019. Triangle estimation using tripartite independent set queries. In 30th International Symposium on Algorithms and Computations (ISAAC 2019), P. Lu and G. Zhang (Eds.). Leibniz International Proceedings in Informatics (LIPIcs), Vol. 149. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 19:1–19:17. DOI:https://doi.org/10.4230/LIPIcs.ISAAC.2019.19Google ScholarGoogle Scholar
  11. S. Cabello and M. Jejčič. 2015. Shortest paths in intersection graphs of unit disks. Computational Geometry 48, 4 (2015), 360--367. DOI:https://doi.org/10.1016/j.comgeo.2014.12.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. L. Chen and W. H. Swallow. 1990. Using group testing to estimate a proportion, and to test the binomial model. Biometrics 46, 4 (Dec. 1990), 1035--1046. DOI:https://doi.org/10.2307/2532446Google ScholarGoogle ScholarCross RefCross Ref
  13. Xi Chen, Amit Levi, and Erik Waingarten. 2020. Nearly optimal edge estimation with independent set queries. In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA’20). 2916--2935. DOI:https://doi.org/10.1137/1.9781611975994.177Google ScholarGoogle ScholarCross RefCross Ref
  14. F. Chung and L. Lu. 2006. Concentration inequalities and martingale inequalities: A survey. Internet Mathematics 3, 1 (2006), 79--127. https://projecteuclid.org:443/euclid.im/1175266369Google ScholarGoogle ScholarCross RefCross Ref
  15. Holger Dell and John Lapinskas. 2018. Fine-grained reductions from approximate counting to decision. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC’18). ACM, New York, NY, 281–288. DOI:https://doi.org/10.1145/3188745.3188920Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Holger Dell, John Lapinskas, and Kitty Meeks. 2020. Approximately counting and sampling small witnesses using a colourful decision oracle. In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA’20). 2201–2211. DOI:https://doi.org/10.1137/1.9781611975994.135Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Dorfman. 1943. The detection of defective members of large populations. Annals of Mathematical Statistics 14, 4 (Dec. 1943), 436--440. DOI:https://doi.org/10.1214/aoms/1177731363Google ScholarGoogle ScholarCross RefCross Ref
  18. D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press. http://www.cambridge.org/gb/knowledge/isbn/item2327542/.Google ScholarGoogle Scholar
  19. T. Eden, A. Levi, D. Ron, and C. Seshadhri. 2017. Approximately counting triangles in sublinear time. SIAM Journal on Computing 46, 5 (2017), 1603--1646. DOI:https://doi.org/10.1137/15M1054389Google ScholarGoogle ScholarCross RefCross Ref
  20. T. Eden, D. Ron, and C. Seshadhri. 2017. On approximating the number of -cliques in sublinear time. arxiv:cs.DS/1707.04858.Google ScholarGoogle Scholar
  21. T. Eden and W. Rosenbaum. 2018. On sampling edges almost uniformly. In 1st Symposium on Simplicity in Algorithms (SOSA 2018), R. Seidel (Ed.). OpenAccess Series in Informatics (OASIcs), Vol. 61. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:9. DOI:https://doi.org/10.4230/OASIcs.SOSA.2018.7Google ScholarGoogle Scholar
  22. M. Falahatgar, A. Jafarpour, A. Orlitsky, V. Pichapati, and A. T. Suresh. 2016. Estimating the number of defectives with group testing. In Proceedings of the IEEE International Symposium on Information Theory (ISIT’16). IEEE, Los Alamitos, CA, 1376--1380. DOI:https://doi.org/10.1109/ISIT.2016.7541524Google ScholarGoogle Scholar
  23. U. Feige. 2006. On sums of independent random variables with unbounded variance and estimating the average degree in a graph. SIAM Journal on Computing 35, 4 (2006), 964--984. DOI:https://doi.org/10.1137/s0097539704447304Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. V. Fishkin. 2003. Disk graphs: A short survey. In Proceedings of the 1st International Workshop on Approximation and Online Algorithms (WAOA’03). 260--264. DOI:https://doi.org/10.1007/978-3-540-24592-6_23Google ScholarGoogle Scholar
  25. O. Goldreich and D. Ron. 2008. Approximating average parameters of graphs. Random Structures 8 Algorithms 32, 4 (2008), 473--493. DOI:https://doi.org/10.1002/rsa.v32:4Google ScholarGoogle Scholar
  26. M. Gonen, D. Ron, and Y. Shavitt. 2011. Counting stars and other small subgraphs in sublinear-time. SIAM Journal on Discrete Mathematics 25, 3 (2011), 1365--1411. DOI:https://doi.org/10.1137/100783066Google ScholarGoogle ScholarCross RefCross Ref
  27. Vladimir Grebinski and Gregory Kucherov. 1998. Reconstructing a Hamiltonian cycle by querying the graph: Application to DNA physical mapping. Discrete Applied Mathematics 88, 1–3 (1998), 147–165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. J. Klein, C. Zeiss, E. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, et al. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308, 5720 (2005), 385--389. DOI:https://doi.org/10.1126/science.1109557Google ScholarGoogle Scholar
  29. K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. 2012. A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1123--1131. http://dl.acm.org/citation.cfm?id=2095116.2095204Google ScholarGoogle Scholar
  30. Lev Reyzin and Nikhil Srivastava. 2007. Learning and verifying graphs using queries with a focus on edge counting. In International Conference on Algorithmic Learning Theory. Springer, 285–297.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Ron and G. Tsur. 2016. The power of an example: Hidden set size approximation using group queries and conditional sampling. ACM Transactions on Computation Theory 8, 4 (2016), Article 15, 19 pages. DOI:https://doi.org/10.1145/2930657Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Seshadhri. 2015. A simpler sublinear algorithm for approximating the triangle count. arxiv:cs.DS/1505.01927.Google ScholarGoogle Scholar
  33. L. Stockmeyer. 1983. The complexity of approximate counting (preliminary version). In Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC’83). 118--126. DOI:https://doi.org/10.1145/800061.808740Google ScholarGoogle Scholar
  34. L. Stockmeyer. 1985. On approximation algorithms for #P. SIAM Journal on Computing 14, 4 (1985), 849--861. DOI:https://doi.org/10.1137/0214060Google ScholarGoogle ScholarCross RefCross Ref
  35. W. H. Swallow. 1985. Group testing for estimating infection rates and probabilities of disease transmission. Phytopathology 75, 8 (1985), 882. DOI:https://doi.org/10.1094/phyto-75-882Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Wang, E. Lo, and M. L. Yiu. 2013. Identifying the most connected vertices in hidden bipartite graphs using group testing. IEEE Tranactions on Knowledge and Data Engineering 25, 10 (2013), 2245--2256. DOI:https://doi.org/10.1109/TKDE.2012.178Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Edge Estimation with Independent Set Oracles

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Algorithms
      ACM Transactions on Algorithms  Volume 16, Issue 4
      October 2020
      404 pages
      ISSN:1549-6325
      EISSN:1549-6333
      DOI:10.1145/3407674
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 September 2020
      • Accepted: 1 May 2020
      • Revised: 1 March 2020
      • Received: 1 September 2018
      Published in talg Volume 16, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format