skip to main content
article

An efficient instantiation algorithm for simulating radiant energy transfer in plant models

Published:01 April 2003Publication History
Skip Abstract Section

Abstract

We describe a complete lighting simulation system tailored for the difficult case of vegetation scenes. Our algorithm is based on hierarchical instantiation for radiosity and precise phase function modeling. It allows efficient calculations both in terms of computation and memory resources. We provide an in-depth description and study of the instantiation-based radiosity technique and we address the problems related to generating and managing phase functions of plant structures, as needed by the instantiation process. We present results demonstrating the high performance of the hierarchical instantiation algorithm and we describe two examples of applications: rendering of large vegetation scenes and plant growth simulation. Other applications of our system range from landscape simulation to agronomical and agricultural studies, and to the design of virtual plants responding to their environment.

References

  1. Ashdown, I. 1994. Radiosity: A Programmer's Perspective. John Wiley & Sons, New York, NY.]] Google ScholarGoogle Scholar
  2. Balandier, P., Lacointe, A., Roux, X. L., Sinoquet, H., Cruiziat, P., and Diz&ebrave;s, S. L. 2000. Simwal: A structural-functional model simulating single walnut tree growth in response to climate and pruning. Ann. For. Sci. 57, 571--585.]]Google ScholarGoogle Scholar
  3. Baranoski, G. V. G. and Rokne, J. G. 1997. An algorithmic reflectance and transmittance model for plant tissue. In Comput. Graph. Forum. Vol. 16(3).]]Google ScholarGoogle Scholar
  4. Beaudet, M. and Messier, C. 1998. Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Canadian J. Forest Res. 30, 1007--1015.]]Google ScholarGoogle Scholar
  5. Beaudet, M., Messier, C., Hilbert, D. W., Lo, E., Wang, Z. M., and Lechowicz, M. J. 2000. Leaf- and plant-level carbon gain in yellow birch, sugar maple and beech seedlings from contrasting forest light environments. Canadian J. Forest Res. 30, 390--415.]]Google ScholarGoogle Scholar
  6. Blaise, F., Barczi, J., Jaeger, M., Dinouard, P., and de Reffye, P. 1998. Simulation of the growth of plants, modeling of metamorphosis and spatial interactions in the architecture and development of plants. Cyberworlds 6, 81--109.]]Google ScholarGoogle Scholar
  7. Borel, C. C., Gerstl, S. A. W., and Powers, B. J. 1991. The Radiosity Method in Optical Remote Sensing of Structured 3-D Surfaces. Remote Sensing of the Environment 36, 13--44.]]Google ScholarGoogle Scholar
  8. Castro, F. D. and Fetcher, N. 1998. Three-dimensional model of the interception of light by a canopy. Agric. For. Meteorol. 90, 215--233.]]Google ScholarGoogle Scholar
  9. Chelle, M., Andrieu, B., and Bouatouch, K. 1998. Nested radiosity for plant canopies. Vis. Comput. 14, 3, 109--125.]]Google ScholarGoogle Scholar
  10. Chen, S., Impens, I., Ceulemans, R., and Kockelbergh, F. 1993. Measurement of gap fraction of fractal generated canopies using digitalized image analysis. Agric. For. Meteorol. 65, 245--259.]]Google ScholarGoogle Scholar
  11. Dauzat, J. and Eroy, M. N. 1987. Simulating light regime and intercrop yields in coconut based farming systems. Europ. J. Agron. 7, 63--74.]]Google ScholarGoogle Scholar
  12. de Reffye, P., Blaise, F., Chemouny, S., Jaffuel, S., Fourcaud, T., and Houllier, F. 1999. Calibration of a hydraulic architecture-based growth model of cotton plants. Agronomie 19, 265--280.]]Google ScholarGoogle Scholar
  13. de Reffye, P., Edelin, C., Francon, J., Jaeger, M., and Puech, C. 1988. Plant models faithful to botanical structure and development. In Comput. Graph., J. Dill, Ed. Vol. 22. 151--158.]] Google ScholarGoogle Scholar
  14. de Reffye, P., Fourcaud, T., Blaise, F., Barthélémy, D., and Houllier, F. 1996. An ecophysiological model for tree growth and tree architecture. In Workshop on Functional Structural Tree Models. Helsinki. Silva Fennica eds.]]Google ScholarGoogle Scholar
  15. Deussen, O. and Strothotte, T. 2000. Computer-generated pen-and-ink illustration of trees. In Siggraph 2000, Computer Graphics Proceedings, K. Akeley, Ed. ACM Press/ACM SIGGRAPH/Addison Wesley Longman, 13--18.]] Google ScholarGoogle Scholar
  16. Fournier, C. and Andrieu, B. 1999. Adel-maize: an L-system based model for the integration of growth processes from the organ to the canopy. Agronomie 19, 313--327.]]Google ScholarGoogle Scholar
  17. Gastellu-Etchegorry, J., Demarez, V., Pinel, V., and Zagolski, F. 1996a. Modeling radiative transfer in heterogeneous 3D vegetation canopies. Remote Sensing of Environment 58, 2, 131--156.]]Google ScholarGoogle Scholar
  18. Gastellu-Etchegorry, J., Zagolski, F., and Romier, J. 1996b. A simple anisotropic reflectance model for homogeneous multilayer canopies. Remote Sensing of Environment 57, 22--38.]]Google ScholarGoogle Scholar
  19. Gautier, H., Měch, R., Prusinkiewicz, P., and Varlet-Grancher, C. 2000. 3D architectural modeling of aerial photomorphogenesis in white clover (trifolium repens l.) using L-systems. Annals Bot. 85, 359--370.]]Google ScholarGoogle Scholar
  20. Goel, N. 1988. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Gordon & Breach Publishing Group.]]Google ScholarGoogle Scholar
  21. Goel, N. S., Rozehnal, I., and Thompson, R. L. 1991. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region. Remote Sensing of Environment 36, 2, 73--104.]]Google ScholarGoogle Scholar
  22. Goldsmith, J. and Salmon, J. 1987. Automatic creation of object hierarchies for ray tracing. IEEE Comput. Graph. Appl. 7, 5 (May), 14--20.]] Google ScholarGoogle Scholar
  23. Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modelling the interaction of light between diffuse surfaces. In Comput. Graph.. Vol. 18. 212--22.]] Google ScholarGoogle Scholar
  24. Govaerts, Y. M. 1995. A model of light scattering in three-dimensional plant canopies: A monte carlo ray tracing approach. Ph.D. thesis, Departement de Physique, Université Catholique de Louvain, Louvain, Belgium.]]Google ScholarGoogle Scholar
  25. Greene, N. 1989. Voxel space automata: Modeling with stochastic growth processes in voxel space. In Comput. Graph., J. Lane, Ed. Vol. 23. 175--184.]] Google ScholarGoogle Scholar
  26. Hanrahan, P., Salzman, D., and Aupperle, L. 1991. A Rapid Hierarchical Radiosity Algorithm. In Comput. Graph.. Vol. 25. 197--206.]] Google ScholarGoogle Scholar
  27. Hasenfratz, J. M., Damez, C., Sillion, F., and Drettakis, G. 1999. A practical analysis of clustering strategies for hierarchical radiosity. In Comput. Graph. Forum. Vol. 18. 221--232.]]Google ScholarGoogle Scholar
  28. Kajiya, J. T. 1986. The Rendering Equation. In Comput. Graph.. Vol. 20. 143--150.]] Google ScholarGoogle Scholar
  29. Max, N., Mobley, C., Keating, B., and Wu, E.-H. 1997. Plane-parallel radiance transport for global illumination in vegetation. In Rendering Techniques '97 (Proceedings of the Eighth Eurographics Workshop on Rendering), J. Dorsey and P. Slusallek, Eds. Springer Wien, New York, NY, 239--250. ISBN 3-211-83001-4.]] Google ScholarGoogle Scholar
  30. Měch, R. and Prusinkiewicz, P. 1996. Visual models of plants interacting with their environment. In SIGGRAPH 96 Conference Proceedings, H. Rushmeier, Ed. Annual Conference Series. ACM SIGGRAPH, Addison Wesley, 397--410. held in New Orleans, Louisiana, 04--09 August 1996.]] Google ScholarGoogle Scholar
  31. Myneni, R., Ross, J., and Asrar, G. 1989. A review on the theory of photon transport in leaf canopies in slab geometry. Agric. For. Meteorol. 45, 1--153.]]Google ScholarGoogle Scholar
  32. Norman, J. and Jarvis, P. 1975. Photosynthesis in sitka spruce (picea sitchensis(bong) carr.). v. radiation penetration theory and a test case. J. Appl. Ecol. 12, 839--878.]]Google ScholarGoogle Scholar
  33. Ouhyoung, M., Chuang, Y.-Y., and Liang, R.-H. 1996. Reusable Radiosity Object. In Comput. Graph. Forum. Vol. 15. C348--C356.]]Google ScholarGoogle Scholar
  34. Pearcy, R. and Sims, D. 1998. A three-dimensional shoot architecture model for assessment of light capture and carbon gain by understory plants. Agric. For. Meteorol. 89, 241--253.]]Google ScholarGoogle Scholar
  35. Perttunen, J., Sievänen, R., Nikinmaa, E., Salminen, H., Saarenmaa, H., and Väkevä, J. 1996. Lignum: a tree model based on simple structural units. Annals Bot. 77, 87--98.]]Google ScholarGoogle Scholar
  36. Planchais, I. and Sinoquet, H. 1996. Foliage determinants of light interception in sunny and shaded branches of fagus ylvatica(l.). œcologia 108, 1--12.]]Google ScholarGoogle Scholar
  37. Rauscher, H., Isebrands, J., Host, G. E., Dickson, R. E., Dickmann, D. I., Crow, T. R., and Michael, D. A. 1990. Ecophys: An ecophysiological growth process model for juvenile poplar. Tree Physiol. 7, 255--281.]]Google ScholarGoogle Scholar
  38. Ross, J. 1981. The radiation regime and architecture of plant stands. Junk Pub., The Hague.]]Google ScholarGoogle Scholar
  39. Ross, J. K. and Marshak, A. L. 1988. Calculation of canopy bidirectional reflectance using the monte carlo method. Remote Sensing of the Environment 24, 213--225.]]Google ScholarGoogle Scholar
  40. Rushmeier, H. E., Patterson, C., and Veerasamy, A. 1993. Geometric Simplification for Indirect Illumination Calculations. In Proceedings of Graphics Interface '93. Morgan Kaufmann, San Francisco, CA, 227--236.]]Google ScholarGoogle Scholar
  41. Siegel, R. and Howell, R. J. 1992. Thermal radiation heat transfer. Hemisphere Publishing Corporation.]]Google ScholarGoogle Scholar
  42. Sillion, F. 1995. A unified hierarchical algorithm for global illumination with scattering volumes and object clusters. IEEE Trans. Vis. Comput. Graph. 1, 3 (Sept.).]] Google ScholarGoogle Scholar
  43. Sillion, F. and Drettakis, G. 1995. Feature-Based Control of Visibility Error: A Multiresolution Clustering Algorithm for Global Illumination. In Computer Graphics Proceedings, Annual Conference Series, 1995 (ACM SIGGRAPH '95 Proceedings). 145--152.]] Google ScholarGoogle Scholar
  44. Sillion, F., Drettakis, G., and Soler, C. 1995. A Clustering Algorithm for Radiance Calculation in General Environments. In Rendering Techniques '95 (Proceedings of the Sixth Eurographics Workshop on Rendering), P. M. Hanrahan and W. Purgathofer, Eds. Springer-Verlag, New York, NY, 196--205.]]Google ScholarGoogle Scholar
  45. Sillion, F. and Puech, C. 1994. Radiosity and Global Illumination. Morgan Kaufmann publishers, San Francisco.]] Google ScholarGoogle Scholar
  46. Smits, B., Arvo, J., and Greenberg, D. 1994. A Clustering Algorithm for Radiosity in Complex Environments. In Computer Graphics Proceedings, Annual Conference Series, 1994 (ACM SIGGRAPH '94 Proceedings). 435--442.]] Google ScholarGoogle Scholar
  47. Soler, C. and Sillion, F. 2000. Hierarchical instantiation for radiosity. In Rendering Techniques '00, B. Peroche and H. Rushmeier, Eds. Springer Wien, New York, NY, 173--184.]] Google ScholarGoogle Scholar
  48. Takenaka, A. 1994. A simulation model of tree architecture development based on growth response to local light environment. J. Plant Res. 107, 321--330.]]Google ScholarGoogle Scholar
  49. Verhoef, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The sail model. Remote Sensing of Environment 16, 125--141.]]Google ScholarGoogle Scholar
  50. Whitehead, D., Grace, J., and Godfrey, M. 1990. Architectural distribution of foliage in individual pinus radiata (d. don) crowns and the effect of clumping on radiation interception. Tree Physiol. 7, 135--155.]]Google ScholarGoogle Scholar

Index Terms

  1. An efficient instantiation algorithm for simulating radiant energy transfer in plant models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader