skip to main content
article

Solving a "Hard" problem to approximate an "Easy" one: heuristics for maximum matchings and maximum traveling salesman problems

Authors Info & Claims
Published:31 December 2002Publication History
Skip Abstract Section

Abstract

We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum.An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.

Skip Supplemental Material Section

Supplemental Material

References

  1. AHUJA, R., MAGNANTI, T., AND ORLIN, J. 1993. Network flows. Theory, algorithms and applications. Prentice-Hall, New-York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. APPLEGATE, D., BIXBY, R., CHVÁTAL, V., AND COOK, W. 1998. On the solution of traveling salesman problems. Documenta Mathematica Extra Volume Proceedings ICM III (1998), 645-656.]]Google ScholarGoogle Scholar
  3. ARORA, S. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45, 5, 753-782.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. BAJAJ, C. 1988. The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3, 177-191.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BARVINOK, A. I., FEKETE, S. P., JOHNSON, D. S., TAMIR, A., WOEGINGER, G. J., AND WOODROOFE, R. 2002. The geometric maximum traveling salesman problem. http://arxiv.org/abs/cs.DS/0204024.]]Google ScholarGoogle Scholar
  6. BARVINOK, A. I., JOHNSON, D. S., WOEGINGER, G. J., AND WOODROOFE, R. 1998. The maximum traveling salesman problem under polyhedral norms. In Proceedings of the 6th International Conference on Integer Programming and Combinatorial Optimization (IPCO), Volume 1412 of Lecture Notes in Computer Science (1998), pp. 195-201. Springer-Verlag.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. BOYD, S. C. AND PULLEYBLANK, W. R. 1990/1991. Optimizing over the subtour polytope of the travelling salesman problem. Mathematical Programming 49(2), 163-187.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. COOK, W. AND ROHE, A. 1999. Computing minimum-weight perfect matchings. INFORMS Journal on Computing 11, 138-148.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. EDMONDS, J. 1965a. Maximum matching and a polyhedron with 0,1 vertices. J. Res. Nat. Bur. Standards (B) 69, 125-130.]]Google ScholarGoogle ScholarCross RefCross Ref
  10. EDMONDS, J. 1965b. Paths, trees, and flowers. Canad. J. Math. 17, 449-467.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. FEKETE. 1999. Simplicity and hardness of the maximum traveling salesman problem under geometric distances. In Proceedings of SODA 1999: ACM-SIAM Symposium on Discrete Algorithms (1999), pp. 337-345.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. FEKETE, S. P. AND MEIJER, H. 2000. On minimum stars, minimum Steiner stars, and maximum matchings. Discrete and Computational Geometry 23, 340a, 389-407.]]Google ScholarGoogle Scholar
  13. FEKETE, S. P., MEIJER, H., ROHE, A., AND TIETZE, W. 2001. Solving a "hard" problem to approximate an "easy" one: Heuristics for maximum matchings and maximum traveling salesman problems. In Proceedings of the Third International Workshop on Algorithm Engineering and Experiments (ALENEX), Volume 2153 of Lecture Notes in Computer Science (2001), pp. 1-16. Springer-Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. GABOW, H. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (1990), pp. 434-443. ACM Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. HELD, M. AND KARP, R. M. 1971. The traveling salesman problem and minimum spanning trees: Part ii. Mathematical Programming 1, 6-25.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. JOHNSON, D. S. AND PAPADIMITRIOU, C. H. 1985. Computational complexity. In E. L. LAWLER, J. K. LENSTRA, A. H. G. R. KAN, AND D. B. SHMOYS Eds., The traveling salesman problem, Chapter 3, pp. 37-85. Chichester: Wiley.]]Google ScholarGoogle Scholar
  17. KUHN, H. W. 1973. A note on Fermat's problem. Math. Programming 4, 98-107.]]Google ScholarGoogle ScholarCross RefCross Ref
  18. MEHLHORN, K. AND SCHÄFER, G. 2000. Implementation of o(nm log n) weighted matchings in general graphs: The power of data structures. In Proceedings of the 3rd Workshop on Algorithm Engineering, Volume 1982 of Lecture Notes in Computer Science (2000), pp. 23-38. Springer-Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. MITCHELL, J. S. B. 1999. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing 28, 4, 1298-1309.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. REINELT, G. 1991. TSPLIB: A traveling salesman problem library. ORSA Journal on Computing, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ 3, 376-384.]]Google ScholarGoogle Scholar
  21. RICHTER-GEBERT, J. AND KORTENKAMP, U. 1999. The Interactive Geometry Software Cinderella. Springer-Verlag, Heidelberg.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. ROHE, A. 1997. Parallele Heuristiken für sehr große Traveling Salesman Probleme. Master's thesis, Universität Bonn.]]Google ScholarGoogle Scholar
  23. TAMIR, A. AND MITCHELL, J. S. B. 1998. A maximum b-matching problem arising from median location models with applications to the roommates problem. Math. Programming 80, 171-194.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. VAIDYA, P. M. 1989. Geometry helps in matching. SIAM J. Comput. 18, 6, 1201-1225.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. VALENZUELA, C. L. AND JONES, A. J. 1997. Estimating the Held-Karp lower bound for the geometric TSP. European Journal of Operational Research 102, 157-175.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. VARADARAJAN, K. R. 1998. A divide-and-conquer algorithm for min-cost perfect matching in the plane. In IEEE Symposium on Foundations of Computer Science (1998), pp. 320-331.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. WEISZFELD, E. 1937. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tôhoku Math. J. 43, 355-386.]]Google ScholarGoogle Scholar

Index Terms

  1. Solving a "Hard" problem to approximate an "Easy" one: heuristics for maximum matchings and maximum traveling salesman problems

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal of Experimental Algorithmics
        ACM Journal of Experimental Algorithmics  Volume 7, Issue
        2002
        218 pages
        ISSN:1084-6654
        EISSN:1084-6654
        DOI:10.1145/944618
        Issue’s Table of Contents

        Copyright © 2002 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 31 December 2002
        Published in jea Volume 7, Issue

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader