1932

Abstract

This article reviews the state of the art of silicon chip–based nanoelectrochemical devices for sensing applications. We first describe analyte mass transport to nanoscale electrodes and emphasize understanding the importance of mass transport for the design of nanoelectrode arrays. We then describe bottom-up and top-down approaches to nanoelectrode fabrication and integration at silicon substrates. Finally, we explore recent examples of on-chip nanoelectrodes employed as sensors and diagnostics, finishing with a brief look at future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020133
2014-06-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020133.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020133&mimeType=html&fmt=ahah

Literature Cited

  1. Arrigan DWM.1.  2004. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:1157–65 [Google Scholar]
  2. Chen SL, Kucernak A. 2.  2002. Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochem. Commun. 4:80–85 [Google Scholar]
  3. Murray RW.3.  2008. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108:2688–720 [Google Scholar]
  4. Batchelor-McAuley C, Dickinson EJF, Rees NV, Toghill KE, Compton RG. 4.  2012. New electrochemical methods. Anal. Chem. 84:669–84 [Google Scholar]
  5. Morris RB, Franta DJ, White HS. 5.  1987. Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: breakdown of transport equations at very small electrodes. J. Phys. Chem. 91:3559–64 [Google Scholar]
  6. Cox JT, Zhang B. 6.  2012. Nanoelectrodes: recent advances and new directions. Annu. Rev. Anal. Chem. 5:253–72 [Google Scholar]
  7. Zevenbergen MAG, Singh PS, Goluch ED, Wolfrum BL, Lemay SG. 7.  2011. Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 11:2881–86 [Google Scholar]
  8. Singh PS, Chan HSM, Kang S, Lemay SG. 8.  2011. Stochastic amperometric fluctuations as a probe for dynamic adsorption in nanofluidic electrochemical systems. J. Am. Chem. Soc. 133:18289–95 [Google Scholar]
  9. Katemann BB, Schuhmann T. 9.  2002. Fabrication and characterization of needle-type.. Electroanalysis 14:22–28 [Google Scholar]
  10. Watkins JJ, Chen JY, White HS, Abruna HD, Maisonhaute E, Amatore C. 10.  2003. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions. Anal. Chem. 75:3962–71 [Google Scholar]
  11. Godino N, Borrise X, Munoz FX, del Campo FJ, Compton RG. 11.  2009. Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J. Phys. Chem. C 113:11119–25 [Google Scholar]
  12. White RJ, White HS. 12.  2008. Electrochemistry in nanometer-wide electrochemical cells. Langmuir 24:2850–55 [Google Scholar]
  13. Sun P, Mirkin MV. 13.  2006. Kinetics of electron-transfer reactions at nanoelectrodes. Anal. Chem. 78:6526–34 [Google Scholar]
  14. Rassaei L, Singh PS, Lemay SG. 14.  2011. Lithography-based nanoelectrochemistry. Anal. Chem. 83:3974–80 [Google Scholar]
  15. Dawson K, Wahl A, Murphy R, O'Riordan A. 15.  2012. Electroanalysis at single gold nanowire electrodes. J. Phys. Chem. C 116:14665–73 [Google Scholar]
  16. Freeman NJ, Sultana R, Reza N, Woodvine H, Terry JG. 16.  et al. 2013. Comparison of the performance of an array of nanoband electrodes with a macro electrode with similar overall area. Phys. Chem. Chem. Phys. 15:8112–18 [Google Scholar]
  17. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. 17.  2011. Point of care diagnostics: status and future. Anal. Chem. 84:487–515 [Google Scholar]
  18. Oja SM, Wood M, Zhang B. 18.  2012. Nanoscale electrochemistry. Anal. Chem. 85:2473–86 [Google Scholar]
  19. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP. 19.  et al. 2007. Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 79:3048–55 [Google Scholar]
  20. Guerrette JP, Percival SJ, Zhang B. 20.  2011. Voltammetric behavior of gold nanotrench electrodes. Langmuir 27:12218–25 [Google Scholar]
  21. Krapf D, Wu MY, Smeets RMM, Zandbergen HW, Dekker C, Lemay SG. 21.  2006. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6:105–9 [Google Scholar]
  22. Conyers JL, White HS. 22.  2000. Electrochemical characterization of electrodes with submicrometer dimensions. Anal. Chem. 72:4441–46 [Google Scholar]
  23. Shao YH, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A. 23.  1997. Nanometer-sized electrochemical sensors. Anal. Chem. 69:1627–34 [Google Scholar]
  24. White RJ, White HS. 24.  2008. Electrochemistry in nanometer-wide electrochemical cells. Langmuir 24:62850–55 [Google Scholar]
  25. White RJ, White HS. 25.  2005. A random walk through electron-transfer kinetics. Anal. Chem. 77:214A–20 [Google Scholar]
  26. Hood SJ, Kampouris DK, Kadara RO, Jenkinson N, del Campo FJ. 26.  et al. 2009. Why ‘the bigger the better’ is not always the case when utilising microelectrode arrays: high density versus low density arrays for the electroanalytical sensing of chromium(VI). Analyst 134:2301–5 [Google Scholar]
  27. Lanyon YH, Arrigan DWM. 27.  2007. Recessed nanoband electrodes fabricated by focused ion beam milling. Sens. Actuators B 121:341–47 [Google Scholar]
  28. Xiao L, Streeter I, Wildgoose GG, Compton RG. 28.  2008. Fabricating random arrays of boron doped diamond nano-disc electrodes: towards achieving maximum Faradaic current with minimum capacitive charging. Sens. Actuators B 133:118–27 [Google Scholar]
  29. Amatore C, Saveant JM, Tessier D. 29.  1983. Charge-transfer at partially blocked surfaces—a model for the case of microscopic active and inactive sites. J. Electroanal. Chem. 147:39–51 [Google Scholar]
  30. Wahl A, Dawson K, MacHale J, Barry S, Quinn A, O'Riordan A. 30.  2013. Gold nanowire electrodes in array: simulation study and experiments. Faraday Discuss. 164:377–90 [Google Scholar]
  31. Menshykau D, Huang XJ, Rees NV, del Campo FJ, Munoz FX, Compton RG. 31.  2009. Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment. Analyst 134:343–48 [Google Scholar]
  32. Woodvine HL, Terry JG, Walton AJ, Mount AR. 32.  2010. The development and characterisation of square microfabricated electrode systems. Analyst 135:1058–65 [Google Scholar]
  33. Bard AJ, Faulkner LR. 33.  2001. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  34. Cutress IJ, Dickinson EJF, Compton RG. 34.  2010. Analysis of commercial general engineering finite element software in electrochemical simulations. J. Electroanal. Chem. 638:76–83 [Google Scholar]
  35. Molina A, Gonzalez J, Henstridge MC, Compton RG. 35.  2011. Voltammetry of electrochemically reversible systems at electrodes of any geometry: a general, explicit analytical characterization. J. Phys. Chem. C 115:4054–62 [Google Scholar]
  36. Henstridge MC, Compton RG. 36.  2012. Mass Transport to micro- and nanoelectrodes and their arrays: a review. Chem. Rec. 12:63–71 [Google Scholar]
  37. Davies TJ, Ward-Jones S, Banks CE, del Campo J, Mas R. 37.  et al. 2005. The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J. Electroanal. Chem. 585:51–62 [Google Scholar]
  38. Davies TJ, Compton RG. 38.  2005. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. J. Electroanal. Chem. 585:63–82 [Google Scholar]
  39. Ordeig O, del Campo J, Munoz FX, Banks CE, Compton RG. 39.  2007. Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19:1973–86 [Google Scholar]
  40. Ongaro M, Ugo P. 40.  2013. Bioelectroanalysis with nanoelectrode ensembles and arrays. Anal. Bioanal. Chem. 405:3715–29 [Google Scholar]
  41. Ma C, Contento NM, Gibson LR, Bohn PW. 41.  2013. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity. ACS Nano 7:5483–90 [Google Scholar]
  42. Goluch ED, Wolfrum B, Singh PS, Zevenbergen MAG, Lemay SG. 42.  2009. Redox cycling in nanofluidic channels using interdigitated electrodes. Anal. Bioanal. Chem. 394:447–56 [Google Scholar]
  43. Barry S, Dawson K, Correa E, Goodacre R, O'Riordan A. 43.  2013. Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday Discuss. 164:283–93 [Google Scholar]
  44. Ueno K, Hayashida M, Ye J-Y, Misawa H. 44.  2005. Fabrication and electrochemical characterization of interdigitated nanoelectrode arrays. Electrochem. Commun. 7:161–65 [Google Scholar]
  45. Paixao T, Richter EM, Brito-Neto JGA, Bertotti M. 45.  2006. Fabrication of a new generator-collector electrochemical micro-device: characterization and applications. Electrochem. Commun. 8:9–14 [Google Scholar]
  46. Xia YN, Whitesides GM. 46.  1996. Shadowed sputtering of gold on V-shaped microtrenches etched in silicon and applications in microfabrication. Adv. Mater. 8:765–68 [Google Scholar]
  47. Boncheva M, Ferrigno R, Bruzewicz DA, Whitesides GM. 47.  2003. Plasticity in self-assembly: templating generates functionally different circuits from a single precursor. Angew. Chem. 42:3368–71 [Google Scholar]
  48. Parviz BA, Ryan D, Whitesides GM. 48.  2003. Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 26:233–41 [Google Scholar]
  49. Cui Y, Duan XF, Hu JT, Lieber CM. 49.  2000. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104:5213–16 [Google Scholar]
  50. Huang Y, Duan XF, Wei QQ, Lieber CM. 50.  2001. Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–33 [Google Scholar]
  51. O'Riordan A, Iacopino D, Lovera P, Floyd L, Reynolds K, Redmond G. 51.  2011. Dielectrophoretic self-assembly of polarized light emitting poly (9,9-dioctylfluorene) nanofibre arrays. Nanotechnology 22:105602 [Google Scholar]
  52. Heller I, Kong J, Heering HA, Williams KA, Lemay SG, Dekker C. 52.  2005. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5:137–42 [Google Scholar]
  53. Martinez JA, Misra N, Wang YM, Stroeve P, Grigoropoulos CP, Noy A. 53.  2009. Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels. Nano Lett. 9:1121–26 [Google Scholar]
  54. Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y. 54.  2010. Single β-AgVO3 nanowire H2S sensor. Nano Lett. 10:2604–8 [Google Scholar]
  55. Mai L, Xu X, Han C, Luo Y, Xu L. 55.  et al. 2011. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Lett. 11:4992–96 [Google Scholar]
  56. Mai LQ, Dong YJ, Xu L, Han CH. 56.  2010. Single nanowire electrochemical devices. Nano Lett. 10:4273–78 [Google Scholar]
  57. Xu QB, Rioux RM, Dickey MD, Whitesides GM. 57.  2008. Nanoskiving: a new method to produce arrays of nanostructures. Acc. Chem. Res. 41:1566–77 [Google Scholar]
  58. Xu QB, Perez-Castillejos R, Li ZF, Whitesides GM. 58.  2006. Fabrication of high-aspect-ratio metallic nanostructures using nanoskiving. Nano Lett. 6:2163–65 [Google Scholar]
  59. Xu QB, Bao JM, Rioux RM, Perez-Castillejos R, Capasso F, Whitesides GM. 59.  2007. Fabrication of large-area patterned nanostructures for optical applications by nanoskiving. Nano Lett. 7:2800–5 [Google Scholar]
  60. Dickey MD, Lipomi DJ, Bracher PJ, Whitesides GM. 60.  2008. Electrically addressable parallel nanowires with 30 nm spacing from micromolding and nanoskiving. Nano Lett. 8:4568–73 [Google Scholar]
  61. Wiley BJ, Lipomi DJ, Bao JM, Capasso F, Whitesides GM. 61.  2008. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Lett. 8:3023–28 [Google Scholar]
  62. Dawson K, Strutwolf J, Herzog G, Arrigan DWM, Quinn AJ, O'Riordan A. 62.  2010. Nanofabrication of robust nanoelectrodes for electrochemical applications. ECS Trans. 28:29–37 [Google Scholar]
  63. Dawson K, Strutwolf J, Rodgers KP, Herzog G, Arrigan DWM. 63.  et al. 2011. Single nanoskived nanowires for electrochemical applications. Anal. Chem. 83:5535–40 [Google Scholar]
  64. Berduque A, Lanyon YH, Beni V, Herzog G, Watson YE. 64.  et al. 2007. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions. Talanta 71:1022–30 [Google Scholar]
  65. Menke EJ, Thompson MA, Xiang C, Yang LC, Penner RM. 65.  2006. Lithographically patterned nanowire electrodeposition. Nat. Mater. 5:914–19 [Google Scholar]
  66. Xiang CX, Yang YG, Penner RM. 66.  2009. Cheating the diffraction limit: electrodeposited nanowires patterned by photolithography. Chem. Commun. 2009:859–73 [Google Scholar]
  67. Kung SC, Xing W, Donavan KC, Yang F, Penner RM. 67.  2010. Photolithographically patterned silver nanowire electrodeposition. Electrochim. Acta 55:8074–80 [Google Scholar]
  68. Xiang C, Guell AG, Brown MA, Kim JY, Hemminger JC, Penner RM. 68.  2008. Coupled electrooxidation and electrical conduction in a single gold nanowire. Nano Lett. 8:3017–22 [Google Scholar]
  69. Tyagi P, Postetter D, Saragnese DL, Randall CL, Mirski MA, Gracias DH. 69.  2009. Patternable nanowire sensors for electrochemical recording of dopamine. Anal. Chem. 81:9979–84 [Google Scholar]
  70. Kung SC, van der Veer WE, Yang F, Donavan KC, Penner RM. 70.  2010. 20 μs photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires. Nano Lett. 10:1481–85 [Google Scholar]
  71. Halpern AR, Donavan KC, Penner RM, Corn RM. 71.  2012. Wafer-scale fabrication of nanofluidic arrays and networks using nanoimprint lithography and lithographically patterned nanowire electrodeposition gold nanowire masters. Anal. Chem. 84:5053–58 [Google Scholar]
  72. Chen YL, Kung SC, Taggart DK, Halpern AR, Penner RM, Corn RM. 72.  2010. Fabricating nanoscale DNA patterns with gold nanowires. Anal. Chem. 82:3365–70 [Google Scholar]
  73. Heo JI, Shim DS, Teixidor GT, Oh S, Madou MJ, Shin H. 73.  2011. Carbon interdigitated array nanoelectrodes for electrochemical applications. J. Electrochem. Soc. 158:J76–80 [Google Scholar]
  74. Valsesia A, Lisboa P, Colpo P, Rossi F. 74.  2006. Fabrication of polypyrrole-based nanoelectrode arrays by colloidal lithography. Anal. Chem. 78:7588–91 [Google Scholar]
  75. Cheng WL, Dong SJ, Wang EK. 75.  2002. Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal. Chem. 74:3599–604 [Google Scholar]
  76. Cui RJ, Liu C, Shen JM, Gao D, Zhu JJ, Chen HY. 76.  2008. Gold nanoparticle-colloidal carbon nanosphere hybrid material: preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 18:2197–204 [Google Scholar]
  77. Li HQ, Wu NQ. 77.  2008. A large-area nanoscale gold hemisphere pattern as a nanoelectrode array. Nanotechnology 19:275301 [Google Scholar]
  78. Branagan SP, Contento NM, Bohn PW. 78.  2012. Enhanced mass transport of electroactive species to annular nanoband electrodes embedded in nanocapillary array membranes. J. Am. Chem. Soc. 134:8617–24 [Google Scholar]
  79. Rauf S, Shiddiky MJA, Asthana A, Dimitrov K. 79.  2012. Fabrication and characterization of gold nanohole electrode arrays. Sens. Actuators B 173:491–96 [Google Scholar]
  80. Rauf S, Shiddiky MJA, Trau M. 80.  2013. ‘Drill and fill’ lithography for controlled fabrication of 3D platinum electrodes. Sens. Actuators B 185:543–47 [Google Scholar]
  81. Keebaugh S, Kalkan AK, Nam WJ, Fonash SJ. 81.  2006. Gold nanowires for the detection of elemental and ionic mercury. Electrochem. Solid State Lett. 9:H88–91 [Google Scholar]
  82. Dawson K, Baudequin M, O'Riordan A. 82.  2011. Single on-chip gold nanowires for electrochemical biosensing of glucose. Analyst 136:4507–13 [Google Scholar]
  83. Kleijn SEF, Yanson AI, Koper MTM. 83.  2012. Electrochemical characterization of nano-sized gold electrodes fabricated by nano-lithography. J. Electroanal. Chem. 666:19–24 [Google Scholar]
  84. Singh KV, Bhura DK, Nandamuri G, Whited AM, Evans D. 84.  et al. 2011. Nanoparticle-enhanced sensitivity of a nanogap-interdigitated electrode array impedimetric biosensor. Langmuir 27:13931–39 [Google Scholar]
  85. Dawson K, Baudequin M, Sassiat N, Quinn AJ, O'Riordan A. 85.  2013. Electroanalysis at discrete arrays of gold nanowire electrodes. Electrochim. Acta 101:169–76 [Google Scholar]
  86. Du RB, Ssenyange S, Aktary M, McDermott MT. 86.  2009. Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position. Small 5:1162–68 [Google Scholar]
  87. Wolfrum B, Zevenbergen M, Lemay S. 87.  2008. Nanofluidic redox cycling amplification for the selective detection of catechol. Anal. Chem. 80:972–77 [Google Scholar]
  88. Zevenbergen MAG, Wolfrum BL, Goluch ED, Singh PS, Lemay SG. 88.  2009. Fast electron-transfer kinetics probed in nanofluidic channels. J. Am. Chem. Soc. 131:11471–77 [Google Scholar]
  89. Rassaei L, Mathwig K, Goluch ED, Lemay SG. 89.  2012. Hydrodynamic voltammetry with nanogap electrodes. J. Phys. Chem. C 116:10913–16 [Google Scholar]
  90. Kaetelhoen E, Hofmann B, Lemay SG, Zevenbergen MAG, Offenhaeusser A, Wolfrum B. 90.  2010. Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients. Anal. Chem. 82:8502–9 [Google Scholar]
  91. Ronkainen NJ, Halsall HB, Heineman WR. 91.  2010. Electrochemical biosensors. Chem. Soc. Rev. 39:1747–63 [Google Scholar]
  92. Jena BK, Percival SJ, Zhang B. 92.  2010. Au disk nanoelectrode by electrochemical deposition in a nanopore. Anal. Chem. 82:6737–43 [Google Scholar]
  93. Adam V, Baloun J, Fabrik I, Trnkova L, Kizek R. 93.  2008. An electrochemical detection of metallothioneins at the zeptomole level in nanolitre volumes. Sensors 8:2293–305 [Google Scholar]
  94. Zhang X, Li D, Bourgeois L, Wang H, Webley PA. 94.  2009. Direct electrodeposition of porous gold nanowire arrays for biosensing applications. ChemPhysChem 10:436–41 [Google Scholar]
  95. Zhang X, Wang H, Bourgeois L, Pan R, Zhao D, Webley PA. 95.  2008. Direct electrodeposition of gold nanotube arrays for sensing applications. J. Mater. Chem. 18:463–67 [Google Scholar]
  96. Salimi A, Hallaj R, Soltanian S, Mamkhezri H. 96.  2007. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta 594:24–31 [Google Scholar]
  97. Karyakin AA, Puganova EA, Budashov IA, Kurochkin IN, Karyakina EE. 97.  et al. 2004. Prussian Blue based nanoelectrode arrays for H2O2 detection. Anal. Chem. 76:474–78 [Google Scholar]
  98. Li J, Qiu JD, Xu JJ, Chen HY, Xia XH. 98.  2007. The synergistic effect of Prussian-Blue-grafted carbon nanotube/poly(4-vinylpyridine) composites for amperometric sensing. Adv. Funct. Mater. 17:1574–80 [Google Scholar]
  99. Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY. 99.  2005. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens. Bioelectron. 21:190–96 [Google Scholar]
  100. Shi AW, Qu FL, Yang MH, Shen GL, Yu RQ. 100.  2008. Amperometric H2O2 biosensor based on poly-thionine nanowire/HRP/nano-Au-modified glassy carbon electrode. Sens. Actuators B 129:779–83 [Google Scholar]
  101. Guo SJ, Wen D, Dong SJ, Wang EK. 101.  2009. Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta 77:1510–17 [Google Scholar]
  102. Schwank J.102.  1983. Catalytic gold: applications of elemental gold in heterogeneous catalysis. Gold Bull. 16:103–10 [Google Scholar]
  103. Galik M, O'Mahony AM, Wang J. 103.  2011. Cyclic and square-wave voltammetric signatures of nitro-containing explosives. Electroanalysis 23:1193–204 [Google Scholar]
  104. Wang GF, Wei Y, Zhang W, Zhang XJ, Fang B, Wang L. 104.  2010. Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim. Acta 168:87–92 [Google Scholar]
  105. Luo L, Li F, Zhu L, Zhang Z, Ding Y, Deng D. 105.  2012. Non-enzymatic hydrogen peroxide sensor based on MnO2-ordered mesoporous carbon composite modified electrode. Electrochim. Acta 77:179–83 [Google Scholar]
  106. Rahman MM, Ahammad AJS, Jin JH, Ahn SJ, Lee JJ. 106.  2010. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–86 [Google Scholar]
  107. Su S, Wei XP, Guo YY, Zhong YL, Su YY. 107.  et al. 2013. A silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity. Part. Part. Syst. Charact. 30:326–31 [Google Scholar]
  108. Jamal M, Hasan M, Mathewson A, Razeeb KM. 108.  2013. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosens. Bioelectron. 40:213–18 [Google Scholar]
  109. Wang Y, Xu H, Zhang JM, Li G. 109.  2008. Electrochemical sensors for clinic analysis. Sensors 8:2043–81 [Google Scholar]
  110. Delvaux M, Demoustier-Champagne S. 110.  2003. Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18:943–51 [Google Scholar]
  111. Jimenez J, Sheparovych R, Pita M, Narvaez Garcia A, Dominguez E. 111.  et al. 2008. Magneto-induced self-assembling of conductive nanowires for biosensor applications. J. Phys. Chem. C 112:7337–44 [Google Scholar]
  112. Aravamudhan S, Ramgir NS, Bhansah S. 112.  2007. Electrochemical biosensor for targeted detection in blood using aligned Au nanowires. Sens. Actuators B 127:29–35 [Google Scholar]
  113. Gopalan AI, Lee KP, Ragupathy D. 113.  2009. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Biosens. Bioelectron. 24:2211–17 [Google Scholar]
  114. Huang JS, Wang DW, Hou HQ, You TY. 114.  2008. Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv. Funct. Mater. 18:441–48 [Google Scholar]
  115. Wilson MS, Nie WY. 115.  2006. Electrochemical multianalyte immunoassays using an array-based sensor. Anal. Chem. 78:2507–13 [Google Scholar]
  116. Yang LJ, Li YB, Erf GF. 116.  2004. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157: H7. Anal. Chem. 76:1107–13 [Google Scholar]
  117. Islam MM, Ueno K, Misawa H. 117.  2010. Redox cycling effect on the surface-enhanced Raman scattering signal of crystal violet molecules at nanostructured interdigitated array electrodes. Anal. Sci. 26:19–24 [Google Scholar]
  118. Singh KV, Whited AM, Ragineni Y, Barrett TW, King J, Solanki R. 118.  2010. 3D nanogap interdigitated electrode array biosensors. Anal. Bioanal. Chem. 397:1493–502 [Google Scholar]
  119. Arya SK, Chornokur G, Venugopal M, Bhansali S. 119.  2010. Antibody functionalized interdigitated mu-electrode (ID mu E) based impedimetric cortisol biosensor. Analyst 135:1941–46 [Google Scholar]
  120. Viswanathan S, Rani C, Anand AV, Ho JAA. 120.  2009. Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens. Bioelectron. 24:1984–89 [Google Scholar]
  121. Du D, Wang J, Lu D, Dohnalkova A, Lin Y. 121.  2011. Multiplexed electrochemical immunoassay of phosphorylated proteins based on enzyme-functionalized gold nanorod labels and electric field-driven acceleration. Anal. Chem. 83:6580–85 [Google Scholar]
  122. Wang G, Zhang G, Huang H, Wang L. 122.  2011. Graphene-Prussian blue/gold nanoparticles based electrochemical immunoassay of carcinoembryonic antigen. Anal. Methods 3:2082–87 [Google Scholar]
  123. Zou Z, Kai J, Rust MJ, Han J, Ahn CH. 123.  2007. Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators 136:518–26 [Google Scholar]
  124. Arya SK, Chornokur G, Venugopal M, Bhansali S. 124.  2010. Dithiobis(succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol. Biosens. Bioelectron. 25:2296–301 [Google Scholar]
  125. Dawson K, Wahl A, Pescaglini A, Iacopino D, O'Riordan A. 125.  2014. Gold nanowire electrode arrays: investigations of non-faradaic behavior. J. Electrochem. Soc. 161:2B3049–54 [Google Scholar]
  126. Dawson K, Wahl A, Barry S, Barrett C, Sassiat N. 126.  et al. 2014. Fully integrated on-chip nano-electrochemical devices for electroanalytical applications. Electrochimica Acta 115:239–46 [Google Scholar]
  127. Wahl A, Barry S, Dawson K, MacHale J, Quinn AJ, O'Riordan A. 127.  2014. Electroanalysis at ultramicro and nanoscale electrodes: a comparative study. J. Electrochem. Soc. 161:2B3055–60 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020133
Loading
/content/journals/10.1146/annurev-anchem-071213-020133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error