1932

Abstract

The fast growth of microfluidic applications based on complex fluids is a result of the unique fluid dynamics of these systems, enabling the creation of devices for health care or biological and chemical analysis. Microchannels designed to focus, concentrate, or separate particles suspended in viscoelastic liquids are becoming common. The key fluid dynamical issue on which such devices work is viscoelasticity-induced lateral migration. This phenomenon was discovered in the 1960s in macroscopic channels and has received great attention within the microfluidic community in the past decade. This review presents the current understanding, both from experiments and theoretical analysis, of viscoelasticity-driven cross-flow migration. Examples of promising microfluidic applications show the unprecedented capabilities offered by such technology based on geometrically simple microchannels and rheologically complex liquids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060150
2017-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060150.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060150&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn SW, Lee SS, Lee SJ, Kim JM. 2015. Microfluidic particle separator utilizing sheathless elasto-inertial focusing. Chem. Eng. Sci. 126:237–43 [Google Scholar]
  2. Aidun CK, Clausen JR. 2010. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42:439–72 [Google Scholar]
  3. Amini H, Lee W, Di Carlo D. 2014. Inertial microfluidic physics. Lab Chip 14:2739–61 [Google Scholar]
  4. Bird RB, Armstrong RC, Hassager O. 1977. Dynamics of Polymeric Liquids 1 New York: Wiley
  5. Brady JF, Bossis G. 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–57 [Google Scholar]
  6. Brunn P. 1976. Slow motion of a sphere in a second-order fluid. Rheol. Acta 15:163–71 [Google Scholar]
  7. Brunn P. 1980. The motion of rigid particles in viscoelastic fluids. J. Non-Newton. Fluid Mech. 7:271–88 [Google Scholar]
  8. Caserta S, D'Avino G, Greco F, Guido S, Maffettone PL. 2011. Migration of a sphere in a viscoelastic fluid under planar shear flow: experiments and numerical predictions. Soft Matter 7:1100–6 [Google Scholar]
  9. Cha S, Kang K, You JB, Im SG, Kim Y, Kim JM. 2014. Hoop stress-assisted three-dimensional particle focusing under viscoelastic flow. Rheol. Acta 53:927–33 [Google Scholar]
  10. Cha S, Shin T, Lee SS, Shim W, Lee G. et al. 2012. Cell stretching measurement utilizing viscoelastic particle focusing. Anal. Chem. 84:10471–77 [Google Scholar]
  11. Chan PCH, Leal LG. 1977. A note on the motion of a spherical particle in a general quadratic flow of a second-order fluid. J. Fluid Mech. 82:549–59 [Google Scholar]
  12. Dannhauser D, Romeo G, Causa F, De Santo I, Netti PA. 2014. Multiplex single particle analysis in microfluidics. Analyst 139:5239–46 [Google Scholar]
  13. D'Avino G, Maffettone PL, Greco F, Hulsen MA. 2010. Viscoelasticity-induced migration of a rigid sphere in confined shear flow. J. Non-Newton. Fluid Mech. 175:466–74 [Google Scholar]
  14. D'Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL. 2012a. Single-line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow focuser. Lab Chip 12:1638–45 [Google Scholar]
  15. D'Avino G, Snijkers F, Pasquino R, Hulsen MA, Greco F. et al. 2012b. Migration of a sphere suspended in viscoelastic liquids in Couette flow: experiments and simulations. Rheol. Acta 51:215–34 [Google Scholar]
  16. De Santo I, D'Avino G, Romeo G, Greco F, Netti PA, Maffettone PL. 2014. Microfluidic Lagrangian trap for Brownian particles: three-dimensional focusing down to the nanoscale. Phys. Rev. Appl. 2:064001 [Google Scholar]
  17. Debbaut B, Avalosse T, Dooley J, Hughes K. 1997. On the development of secondary motions in straight channels induced by the second normal stress difference: experiments and simulations. J. Non-Newton. Fluid. Mech. 69:255–71 [Google Scholar]
  18. Del Giudice F, D'Avino G, Greco F, De Santo I, Netti PA, Maffettone PL. 2015a. Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab Chip 15:783–92 [Google Scholar]
  19. Del Giudice F, D'Avino G, Greco F, Netti PA, Maffettone PL. 2015b. Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid. Nanofluid. 19:95–104 [Google Scholar]
  20. Del Giudice F, Madadi H, Villone MM, D'Avino G, Cusano AM. et al. 2015c. Magnetophoresis ‘meets’ viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip 15:1912–22 [Google Scholar]
  21. Del Giudice F, Romeo G, D'Avino G, Greco F, Netti PA, Maffettone PL. 2013. Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab Chip 13:4263–71 [Google Scholar]
  22. Feng J, Hu HH, Joseph DD. 1994. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277:271–301 [Google Scholar]
  23. Gauthier F, Goldsmith HL, Mason SG. 1971. Particle motions in non-Newtonian media. I: Couette flow. Rheol. Acta 10:344–64 [Google Scholar]
  24. Glowinski R, Pan T-W, Hesla TI, Joseph DD. 1999. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25:755–94 [Google Scholar]
  25. Higdon JJL, Muldowney GP. 1995. Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. J. Fluid Mech. 298:193–210 [Google Scholar]
  26. Ho BP, Leal LG. 1974. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65:365–400 [Google Scholar]
  27. Ho BP, Leal LG. 1976. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76:783–99 [Google Scholar]
  28. Howard MP, Panagiotopoulos AZ, Nikoubashman A. 2015. Inertial and viscoelastic forces on rigid colloids in microfluidic channels. J. Chem. Phys. 142:224908 [Google Scholar]
  29. Hu HH. 1996. Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22:335–52 [Google Scholar]
  30. Hu HH, Patankar NA, Zhu MY. 2001. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys. 169:427–62 [Google Scholar]
  31. Huang PY, Feng JJ, Hu HH, Joseph DD. 1997. Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 343:73–94 [Google Scholar]
  32. Hughes TJR, Liu WK, Zimmerman TK. 1981. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29:329–49 [Google Scholar]
  33. Hur SC, Tse HTK, Di Carlo D. 2010. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–80 [Google Scholar]
  34. Ishii K, Hasimoto H. 1980. Lateral migration of a spherical particle in flows in a circular tube. J. Phys. Soc. Jpn. 48:2144–53 [Google Scholar]
  35. James DF. 2009. Boger fluids. Annu. Rev. Fluid Mech. 41:129–42 [Google Scholar]
  36. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. 2013. DNA-based highly tunable particle focuser. Nat. Commun. 4:2567 [Google Scholar]
  37. Karimi A, Yazdi S, Ardekani AM. 2013. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7:021501 [Google Scholar]
  38. Karnis A, Mason SG. 1966. Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol. 10:571–92 [Google Scholar]
  39. Kim JY, Ahn SW, Lee SS, Kim JM. 2012. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab Chip 12:2807–14 [Google Scholar]
  40. Ko T, Patankar NA, Joseph DD. 2006. Lift and multiple equilibrium positions of a single particle in Newtonian and Oldroyd-B fluids. Comput. Fluids 35:121–46 [Google Scholar]
  41. Lee DJ, Brenner H, Youn JR, Song YS. 2013. Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci. Rep. 3:3258 [Google Scholar]
  42. Lee W, Aminia H, Stone HA, Di Carlo D. 2010. Dynamic self-assembly and control of microfluidic particle crystals.. PNAS 107:22413–18 [Google Scholar]
  43. Leshansky AM, Bransky A, Korin N, Dinnar U. 2007. Tunable nonlinear viscoelastic focusing in a microfluidic device. Phys. Rev. Lett. 98:234501 [Google Scholar]
  44. Li G, McKinley GH, Ardekani AM. 2015. Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech. 785:486–505 [Google Scholar]
  45. Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D. et al. 2014. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5:4120 [Google Scholar]
  46. Lim H, Nam J, Shin S. 2014. Lateral migration of particles suspended in viscoelastic fluids in a microchannel flow. Microfluid. Nanofluid. 17:683–92 [Google Scholar]
  47. Liu C, Xue C, Chen X, Shan L, Tian Y, Hu G. 2015. Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Anal. Chem. 87:6041–48 [Google Scholar]
  48. Lomholt S, Maxey MR. 2003. Force-coupling method for particulate two-phase flow: Stokes flow. J. Comput. Phys. 184:381–405 [Google Scholar]
  49. Lormand BM, Phillips RJ. 2004. Sphere migration in oscillatory Couette flow of a viscoelastic fluid. J. Rheol. 48:551–70 [Google Scholar]
  50. Lu X, Xuan X. 2015a. Continuous microfluidic particle separation via elasto-inertial pinched flow fractionation. Anal. Chem. 87:6389–96 [Google Scholar]
  51. Lu X, Xuan X. 2015b. Elasto-inertial pinched flow fractionation for continuous shape-based particle separation. Anal. Chem. 87:11523–30 [Google Scholar]
  52. Lu X, Zhu L, Hua R-M, Xuan X. 2015. Continuous sheath-free separation of particles by shape in viscoelastic fluids. Appl. Phys. Lett. 107:264102 [Google Scholar]
  53. Matas JP, Morris JF, Guazzelli E. 2004. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515:171–95 [Google Scholar]
  54. Nam J, Lim H, Kim D, Jung H, Shin S. 2012. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip 12:1347–54 [Google Scholar]
  55. Nam J, Namgung B, Lim CT, Bae J-E, Leo HL. et al. 2015a. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. J. Chromatogr. A 1406:244–50 [Google Scholar]
  56. Nam J, Tan JKS, Khoo BL, Namgung B, Leo HL. et al. 2015b. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow. Biomicrofluidics 9:064117 [Google Scholar]
  57. Patankar NA, Huang PY, Ko T, Joseph DD. 2001. Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation. J. Fluid Mech. 438:67–100 [Google Scholar]
  58. Patankar NA, Singh P, Joseph DD, Glowinski R, Pan T-W. 2000. A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26:1509–24 [Google Scholar]
  59. Pozrikidis C. 1992. Boundary Integral and Singularity Methods for Linearized Viscous Flow Cambridge, UK: Cambridge Univ. Press
  60. Romeo G, D'Avino G, Greco F, Netti PA, Maffettone PL. 2013. Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab Chip 13:2802–7 [Google Scholar]
  61. Saffman PG. 1965. Lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:385–400 [Google Scholar]
  62. Segré S, Silberberg A. 1961. Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–10 [Google Scholar]
  63. Segré S, Silberberg A. 1962. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14:136–57 [Google Scholar]
  64. Seo KW, Byeon HJ, Huh HK, Lee SJ. 2014a. Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv. 4:3512–20 [Google Scholar]
  65. Seo KW, Ha YR, Lee SJ. 2014b. Vertical focusing and cell ordering in a microchannel via viscoelasticity: applications for cell monitoring using a digital holographic microscopy. Appl. Phys. Lett. 104:213702 [Google Scholar]
  66. Seo KW, Kang YJ, Lee SJ. 2014c. Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys. Fluids 26:063301 [Google Scholar]
  67. Sullivan MT, Moore K, Stone HA. 2008. Transverse instability of bubbles in viscoelastic channel flows. Phys. Rev. Lett. 101:244503 [Google Scholar]
  68. Tehrani MA. 1996. An experimental study of particle migration in pipe flow of viscoelastic fluids. J. Rheol. 40:1057–77 [Google Scholar]
  69. Trofa M, D'Avino G, Hulsen MA, Greco F, Maffettone PL. 2016. Numerical simulations of the dynamics of a slippery particle in Newtonian and viscoelastic fluids subjected to shear and Poiseuille flows. J. Non-Newton. Fluid Mech. 228:46–54 [Google Scholar]
  70. Trofa M, Vocciante M, D'Avino G, Hulsen MA, Greco F, Maffettone PL. 2015. Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow. Comput. Fluids 107:215–23 [Google Scholar]
  71. Truesdell CA, Noll V. 1965. Encyclopaedia of Physics 3 The Non-Linear Field Theories of Mechanics S Flugge Berlin: Springer
  72. Villone MM, D'Avino G, Hulsen MA, Greco F, Maffettone PL. 2011. Simulations of viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow. J. Non-Newton. Fluid Mech. 166:1396–405 [Google Scholar]
  73. Villone MM, D'Avino G, Hulsen MA, Greco F, Maffettone PL. 2013. Particle motion in square channel flow of a viscoelastic liquid: migration versus secondary flows. J. Non-Newton. Fluid Mech. 195:1–8 [Google Scholar]
  74. Xuan X, Zhu J, Church C. 2010. Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9:1–16 [Google Scholar]
  75. Xue SC, Phan-Thien N, Tanner RI. 1995. Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method. J. Non-Newton. Fluid. Mech. 59:191–213 [Google Scholar]
  76. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM. 2011. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266–73 [Google Scholar]
  77. Yang S, Lee SS, Ahn SW, Kang K, Shim W. et al. 2012. Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matter 8:5011–19 [Google Scholar]
  78. Yuan D, Zhang J, Yan S, Pan C, Alici G. 2015. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays. Biomicrofluidics 9:044108 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060150
Loading
/content/journals/10.1146/annurev-fluid-010816-060150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error