1932

Abstract

Solid-oxide fuel cells are devices for the efficient conversion of chemical energy to electrical energy and heat. Research efforts are currently addressed toward the optimization of cells operating at temperatures in the region of 600°C, known as intermediate-temperature solid-oxide fuel cells, for which materials requirements are very stringent. In addition to the requirements of mechanical and chemical compatibility, the materials must show a high degree of oxide ion mobility and electrochemical activity at this low temperature. Here we mainly examine the criteria for the development of two key components of intermediate-temperature solid-oxide fuel cells: the electrolyte and the cathode. We limit the discussion to novel approaches to materials optimization and focus on the fluorite oxide for electrolytes, principally those based on ceria and zirconia, and on perovskites and perovskite-related families in the case of cathodes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070813-113426
2014-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-070813-113426.html?itemId=/content/journals/10.1146/annurev-matsci-070813-113426&mimeType=html&fmt=ahah

Literature Cited

  1. Hansen JB, Fock F, Lindboe HH. 1.  2013. Biogas upgrading: by steam electrolysis or co-electrolysis of biogas and steam. ECS Trans. 57:3089–97 [Google Scholar]
  2. Vora SD.2.  2013. SECA program overview and status. ECS Trans. 57:11–19 [Google Scholar]
  3. Horiuchi K.3.  2013. Current status of national SOFC projects in Japan. ECS Trans. 57:3–10 [Google Scholar]
  4. Laguna-Bercero MA.4.  2012. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203:4–16 [Google Scholar]
  5. Tarancón A, Burriel M, Santiso J, Skinner SJ, Kilner JA. 5.  2010. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20:3799 [Google Scholar]
  6. Sun C, Hui R, Roller J. 6.  2010. Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14:1125–44 [Google Scholar]
  7. Tsipis EV, Kharton VV. 7.  2008. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J. Solid State Electrochem. 12:1367–91 [Google Scholar]
  8. Jacobson AJ.8.  2010. Materials for solid oxide fuel cells. Chem. Mater. 22:660–74 [Google Scholar]
  9. Tietz F, Buchkremer HP, Stover D. 9.  2006. 10 years of materials research for solid oxide fuel cells at Forschungszentrum Jülich. J. Electroceram. 17:701–7 [Google Scholar]
  10. Aguadero A, Fawcett L, Taub S, Woolley R, Wu K-T. 10.  et al. 2012. Materials development for intermediate-temperature solid oxide electrochemical devices. J. Mater. Sci. 47:3925–48 [Google Scholar]
  11. Huang K, Goodenough JB. 11.  2009. Solid Oxide Fuel Cell Technology: Principles, Performance and Operations Cambridge, UK: Woodhead
  12. Ishihara T. 12.  2009. Perovskite Oxide for Solid Oxide Fuel Cells New York: Springer
  13. Singhal SC, Kendall K. 13.  2003. High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications Oxford: Elsevier Adv. Technol.
  14. Preux N, Rolle A, Vannier RN. 14.  2012. Electrolytes and ion conductors for solid oxide fuel cells. See Ref. 56 370–401
  15. Kharton VV, Marques FMB, Kilner JA, Atkinson A. 15.  2009. Oxygen ion–conducting materials. Solid State Electrochemistry 2 VV Kharton 301–34 Weinheim, Ger./Chichester, UK: Wiley-VCH [Google Scholar]
  16. Bi L, Tao ZT, Peng RR, Liu W. 16.  2010. Research progress in the electrolyte materials for protonic ceramic membrane fuel cells. J. Inorg. Mater. 25:1–7 [Google Scholar]
  17. Peng R, Wu T, Liu W, Liu X, Meng G. 17.  2010. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 20:6218–25 [Google Scholar]
  18. Tsipis EV, Kharton VV. 18.  2011. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. J. Solid State Electrochem. 15:1007–40 [Google Scholar]
  19. Kilner JA.19.  2000. Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129:13–23 [Google Scholar]
  20. Bayliss RD, Cook SN, Kotsantonis S, Chater RJ, Kilner JA. 20.  2014. Oxygen ion diffusion and surface exchange properties of the α- and δ-phases of Bi2O3. Adv. Energy Mater. In press
  21. Butler V, Catlow CRA, Fender BEF, Harding JH. 21.  1983. Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8:109–13 [Google Scholar]
  22. Kilo M, Borchardt G, Lesage B, Weber S, Scherrer S. 22.  et al. 2002. Y and Zr tracer diffusion in yttria-stabilized zirconia at temperatures between 1,250 K and 2,000 K. Key Eng. Mater. 206–213:601–4 [Google Scholar]
  23. Manning PS, Sirman JD, DeSouza RA, Kilner JA. 23.  1997. The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia. Solid State Ionics 100:1–10 [Google Scholar]
  24. Kilner JA, Waters CD. 24.  1982. The effects of dopant cation oxygen vacancy complexes on the anion transport properties of nonstoichiometric fluorite oxides. Solid State Ionics 6:253–59 [Google Scholar]
  25. Kilner JA, Steele BCH. 25.  1981. Mass transport in anion deficient fluorite oxides. Nonstoichiometric Oxides OT Sorensen 661–66 New York: Academic [Google Scholar]
  26. Faber J, Geoffroy C, Roux A, Sylvestre A, Abelard P. 26.  1989. A systematic investigation of the dc electrical conductivity of rare-earth doped ceria. Appl. Phys. Mater. 49:225–32 [Google Scholar]
  27. Burbano M, Norberg ST, Hull S, Eriksson SG, Marrocchelli D. 27.  et al. 2012. Oxygen vacancy ordering and the conductivity maximum in Y2O3-doped CeO2. Chem. Mater. 24:222–29 [Google Scholar]
  28. Minervini L, Zacate MO, Grimes RW. 28.  1999. Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116:339–49 [Google Scholar]
  29. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B. 29.  2006. Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. USA 103:3518–21 [Google Scholar]
  30. Navrotsky A, Simoncic P, Yokokawa H, Chen W, Lee T. 30.  2007. Calorimetric measurements of energetics of defect interactions in fluorite oxides. Faraday Discuss. 134:171–80 [Google Scholar]
  31. Yamazaki S, Matsui T, Ohashi T, Arita Y. 31.  2000. Defect structures in doped CeO2 studied by using XAFS spectrometry. Solid State Ionics 136–37:913–20 [Google Scholar]
  32. Deguchi H, Yoshida H, Inagaki T, Horiuchi M. 32.  2005. EXAFS study of doped ceria using multiple data set fit. Solid State Ionics 176:1817–25 [Google Scholar]
  33. Ou DR, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J. 33.  2008. Oxygen-vacancy ordering in lanthanide-doped ceria: dopant-type dependence and structure model. Phys. Rev. B 77:024108 [Google Scholar]
  34. Kilner JA.34.  1983. Fast anion transport in solids. Solid State Ionics 8:201–7 [Google Scholar]
  35. Kim D-J.35.  1989. Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. J. Am. Ceram. Soc. 72:1415–21 [Google Scholar]
  36. van Herle J, Seneviratne D, McEvoy AJ. 36.  1999. Lanthanide co-doping of solid electrolytes: AC conductivity behaviour. J. Eur. Ceram. Soc. 19:837–41 [Google Scholar]
  37. Ralph JM, Przydatek J, Kilner JA, Seguelong T. 37.  1997. Novel doping systems in ceria. Ber. Bunsenges. Phys. Chem. 101:1403–7 [Google Scholar]
  38. Li P, Chen IW, Pennerhahn JE, Tien TY. 38.  1991. X-ray absorption studies of ceria with trivalent dopants. J. Am. Ceram. Soc. 74:958–67 [Google Scholar]
  39. Jaiswal N, Upadhyay S, Kumar D, Parkash O. 39.  2013. Ionic conductivity investigation in lanthanum (La) and strontium (Sr) co-doped ceria system. J. Power Sources 222:230–36 [Google Scholar]
  40. Singh N, Singh NK, Kumar D, Parkash O. 40.  2012. Effect of co-doping of Mg and La on conductivity of ceria. J. Alloys Compd. 519:129–35 [Google Scholar]
  41. Zheng YF, Shi YM, Gu HT, Gao L, Chen H, Guo LC. 41.  2009. La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs. Mater. Res. Bull. 44:1717–21 [Google Scholar]
  42. Zheng YF, Gu HT, Chen H, Gao L, Zhu XF, Guo LC. 42.  2009. Effect of Sm and Mg co-doping on the properties of ceria-based electrolyte materials for IT-SOFCs. Mater. Res. Bull. 44:775–79 [Google Scholar]
  43. Banerjee S, Devi PS, Topwal D, Mandal S, Menon K. 43.  2007. Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium co-doping. Adv. Funct. Mater. 17:2847–54 [Google Scholar]
  44. Zheng YF, Wu LQ, Gu HT, Gao L, Chen H, Guo LC. 44.  2009. The effect of Sr on the properties of Y-doped ceria electrolyte for IT-SOFCs. J. Alloys Compd. 486:586–89 [Google Scholar]
  45. Dholabhai PP, Adams JB, Crozier PA, Sharma R. 45.  2011. In search of enhanced electrolyte materials: a case study of doubly doped ceria. J. Mater. Chem. 21:18991–97 [Google Scholar]
  46. Dikmen S.46.  2010. Effect of co-doping with Sm3+, Bi3+, La3+, and Nd3+ on the electrochemical properties of hydrothermally prepared gadolinium-doped ceria ceramics. J. Alloys Compd. 491:106–12 [Google Scholar]
  47. Guan XF, Zhou HP, Wang Y, Zhang J. 47.  2008. Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J. Alloys Compd. 464:310–16 [Google Scholar]
  48. Kasse RM, Nino JC. 48.  2013. Ionic conductivity of SmxNdyCe0.9O2-δ codoped ceria electrolytes. J. Alloys Compd. 575:399–402 [Google Scholar]
  49. Omar S, Wachsman ED, Nino JC. 49.  2006. A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes. Solid State Ionics 177:3199–203 [Google Scholar]
  50. Omar S, Wachsman ED, Nino JC. 50.  2007. Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Appl. Phys. Lett. 91:144106 [Google Scholar]
  51. Omar S, Wachsman ED, Nino JC. 51.  2008. Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178:1890–97 [Google Scholar]
  52. Park K, Hwang HK. 52.  2011. Electrical conductivity of Ce0.8Gd0.2−xDyxO2-δ (0 ≤ x ≤ 0.2) co-doped with Gd3+ and Dy3+ for intermediate-temperature solid oxide fuel cells. J. Power Sources 196:4996–99 [Google Scholar]
  53. Sha X.53.  2007. Study on La and Y co-doped ceria-based electrolyte materials. J. Alloys Compd. 428:59–64 [Google Scholar]
  54. Zheng YF, Zhou M, Ge L, Li SJ, Chen H, Guo LC. 54.  2011. Effect of Dy on the properties of Sm-doped ceria electrolyte for IT-SOFCs. J. Alloys Compd. 509:1244–48 [Google Scholar]
  55. Zajac W, Molenda J. 55.  2008. Electrical conductivity of doubly doped ceria. Solid State Ionics 179:154–58 [Google Scholar]
  56. 56.  Deleted in proof
  57. Tuller HL.57.  2000. Ionic conduction in nanocrystalline materials. Solid State Ionics 131:143–57 [Google Scholar]
  58. De Souza RA, Pietrowski MJ, Anselmi-Tamburini U, Kim S, Munir ZA, Martin M. 58.  2008. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. Phys. Chem. Chem. Phys. 10:2067–72 [Google Scholar]
  59. Sata N, Eberman K, Eberl K, Maier J. 59.  2000. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408:946–49 [Google Scholar]
  60. Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH. 60.  2005. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176:1319–26 [Google Scholar]
  61. Karthikeyan A, Chang CL, Ramanathan S. 61.  2006. High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects. Appl. Phys. Lett. 89:183116 [Google Scholar]
  62. Sillassen M, Eklund P, Pryds N, Johnson E, Helmersson U, Bottiger J. 62.  2010. Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20:2071–76 [Google Scholar]
  63. Schichtel N, Korte C, Hesse D, Janek J. 63.  2009. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11:3043–48 [Google Scholar]
  64. Korte C, Peters A, Janek J, Hesse D, Zakharov N. 64.  2008. Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10:4623–35 [Google Scholar]
  65. Peters A, Korte C, Hesse D, Zakharov N, Janek J. 65.  2007. Ionic conductivity and activation energy for oxygen ion transport in superlattices—the multilayer system CSZ (ZrO2 +CaO)/Al2O3. Solid State Ionics 178:67–76 [Google Scholar]
  66. Aydin H, Korte C, Rohnke M, Janek J. 66.  2013. Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers. Phys. Chem. Chem. Phys. 15:1944–55 [Google Scholar]
  67. Aydin H, Korte C, Janek J. 67.  2013. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain. Sci. Technol. Adv. Mater. 14:035007 [Google Scholar]
  68. Schichtel N, Korte C, Hesse D, Zakharov N, Butz B. 68.  et al. 2010. On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ|Sc2O3 multilayers. Phys. Chem. Chem. Phys. 12:14596–608 [Google Scholar]
  69. Korte C, Schichtel N, Hesse D, Janek J. 69.  2009. Influence of interface structure on mass transport in phase boundaries between different ionic materials: experimental studies and formal considerations. Monatschefte Chem. 140:1069–80 [Google Scholar]
  70. Araki W, Adachi T. 70.  2008. Mechanical effect on oxygen mobility in yttria stabilized zirconia. Life-Cycle Analysis for New Energy Conversion and Storage Systems V Fthenakis, A Dillon, N Savage 125–29 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  71. Araki W, Imai Y, Adachi T. 71.  2009. Mechanical stress effect on oxygen ion mobility in 8 mol% yttria-stabilized zirconia electrolyte. J. Eur. Ceram. Soc. 29:2275–79 [Google Scholar]
  72. Araki W, Arai Y. 72.  2010. Oxygen diffusion in yttria-stabilized zirconia subjected to uniaxial stress. Solid State Ionics 181:441–46 [Google Scholar]
  73. Wang CM, Engelhard MH, Azad S, Saraf LV, McCready DE. 73.  et al. 2006. Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on α-Al2O3. Solid State Ionics 177:1299–306 [Google Scholar]
  74. Jiang J, Hu X, Shen W, Ni C, Hertz JL. 74.  2013. Improved ionic conductivity in strained yttria-stabilized zirconia thin films. Appl. Phys. Lett. 102:143901 [Google Scholar]
  75. Pergolesi D, Fabbri E, Cook SN, Roddatis V, Traversa E, Kilner JA. 75.  2012. Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia-CeO2 heterointerfaces. ACS Nano 6:10524–34 [Google Scholar]
  76. Morris RJH, Fearn S, Perkins J, Kilner J, Dowsett MG. 76.  et al. 2011. The use of low-energy SIMS (LE-SIMS) for nanoscale fuel cell material development. Surf. Interface Anal. 43:635–38 [Google Scholar]
  77. Perkins JM, Fearn S, Cook SN, Srinivasan R, Rouleau CM. 77.  et al. 2010. Anomalous oxidation states in multilayers for fuel cell applications. Adv. Funct. Mater. 20:2664–74 [Google Scholar]
  78. Gerstl M, Friedbacher G, Kubel F, Hutter H, Fleig J. 78.  2013. The relevance of interfaces for oxide ion transport in yttria stabilized zirconia (YSZ) thin films. Phys. Chem. Chem. Phys. 15:1097–107 [Google Scholar]
  79. Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E. 79.  et al. 2008. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321:676–80 [Google Scholar]
  80. Kim HR, Kim JC, Lee KR, Ji HI, Lee HW. 80.  et al. 2011. “Illusional” nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films. Phys. Chem. Chem. Phys. 13:6133–37 [Google Scholar]
  81. Guo X.81.  2009. Comment on “Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures.”. Science 324:465 [Google Scholar]
  82. Cavallaro A, Burriel M, Roqueta J, Apostolidis A, Bernardi A. 82.  et al. 2010. Electronic nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ionics 181:592–601 [Google Scholar]
  83. Pennycook TJ, Beck MJ, Varga K, Varela M, Pennycook SJ, Pantelides ST. 83.  2010. Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. Phys. Rev. Lett. 104:115901 [Google Scholar]
  84. Kushima A, Yildiz B. 84.  2010. Oxygen ion diffusivity in strained yttria stabilized zirconia: Where is the fastest strain?. J. Mater. Chem. 20:4809–19 [Google Scholar]
  85. Rushton MJD, Chroneos A, Skinner SJ, Kilner JA, Grimes RW. 85.  2013. Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. Solid State Ionics 230:37–42 [Google Scholar]
  86. Brandon NP, Skinner S, Steele BCH. 86.  2003. Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33:183–213 [Google Scholar]
  87. Fleig J, Maier J. 87.  2004. The polarization of mixed conducting SOFC cathodes: effects of surface reaction coefficient, ionic conductivity and geometry. J. Eur. Ceram. Soc. 24:1343–47 [Google Scholar]
  88. Manthiram A, Kim J-H, Kim YN, Lee K-T. 88.  2011. Crystal chemistry and properties of mixed ionic-electronic conductors. J. Electroceram. 27:93–107 [Google Scholar]
  89. Jiang SP, Wang W. 89.  2005. Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells. J. Electrochem. Soc. 152:A1398–1408 [Google Scholar]
  90. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. 90.  1991. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48:207–12 [Google Scholar]
  91. Orera A, Slater PR. 91.  2010. New chemical systems for solid oxide fuel cells. Chem. Mater. 22:675–90 [Google Scholar]
  92. Dieterle L, Bockstaller P, Gerthsen D, Hayd J, Ivers-Tiffée E, Guntow U. 92.  2011. Microstructure of nanoscaled La0.6Sr0.4CoO3−δ cathodes for intermediate-temperature solid oxide fuel cells. Adv. Energy Mater. 1:249–58 [Google Scholar]
  93. Lee KT, Manthiram A. 93.  2006. Comparison of Ln0.6Sr0.4CoO3−δ (Ln = La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells. J. Electrochem. Soc. 153:A794–98 [Google Scholar]
  94. Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan AA. 94.  et al. 1998. Oxygen permeation through Sr(Ln)CoO3−δ (Ln = La, Nd, Sm, Gd) ceramic membranes. Mater. Sci. Eng. B 52:105–16 [Google Scholar]
  95. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR. 95.  1995. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ionics 76:273–83 [Google Scholar]
  96. Marinha D, Hayd J, Dessemond L, Ivers-Tiffée E, Djurado E. 96.  2011. Performance of (La,Sr)(Co,Fe)O3−x double-layer cathode films for intermediate temperature solid oxide fuel cell. J. Power Sources 196:5084–90 [Google Scholar]
  97. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX. 97.  2000. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J. Membr. Sci. 172:177–88 [Google Scholar]
  98. Shao ZP, Haile SM. 98.  2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–73 [Google Scholar]
  99. Vente JF, McIntosh S, Haije WG, Bouwmeester HJM. 99.  2006. Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. J. Solid State Electrochem. 10:581–88 [Google Scholar]
  100. Svarcova S.100.  2008. Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–91 [Google Scholar]
  101. Arnold M, Gesing TM, Martynczuk J, Feldhoff A. 101.  2008. Correlation of the formation and the decomposition process of the BSCF perovskite at intermediate temperatures. Chem. Mater. 20:5851–88 [Google Scholar]
  102. Niedrig C, Taufall S, Burriel M, Menesklou W, Wagner SF. 102.  et al. 2011. Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)1. Solid State Ionics 197:25–31 [Google Scholar]
  103. Arnold M, Wang H, Feldhoff A. 103.  2007. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J. Membr. Sci. 293:44–52 [Google Scholar]
  104. Yan AY, Maragou V, Arico A, Cheng M, Tsiakaras P. 104.  2007. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode SOFCII. The effect of CO2 on the chemical stability. Appl. Catal. B 76:320–27 [Google Scholar]
  105. Kuklja MM, Kotomin EA, Merkle R, Mastrikov YA, Maier J. 105.  2013. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15:5443–71 [Google Scholar]
  106. Skinner SJ.106.  2001. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3:113–21 [Google Scholar]
  107. Hayd J, Yokokawa H, Ivers-Tiffée E. 107.  2013. Hetero-interfaces at nanoscaled (La,Sr)CoO3−δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 160:F351–59 [Google Scholar]
  108. Ding H, Virkar AV, Liu M, Liu F. 108.  2013. Suppression of Sr surface segregation in La1−xSrxCo1−yFeyO3−δ: a first principles study. Phys. Chem. Chem. Phys. 15:489–96 [Google Scholar]
  109. Hjalmarsson P, Søgaard M, Mogensen M. 109.  2008. Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3−δ as porous SOFC-cathode. Solid State Ionics 179:1422–26 [Google Scholar]
  110. Yamamoto O, Takeda Y, Kanno R, Noda M. 110.  1987. Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics 22:241–46 [Google Scholar]
  111. Simner SP, Anderson MD, Engelhard MH, Stevenson JW. 111.  2006. Degradation mechanisms of La–Sr–Co–Fe–O3 SOFC cathodes. Electrochem. Solid State Lett. 9:A478–81 [Google Scholar]
  112. Duan Z, Yang M, Yan A, Hou Z, Dong Y. 112.  et al. 2006. Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT SOFCs with a GDC interlayer. J. Power Sources 160:57–64 [Google Scholar]
  113. Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y. 113.  et al. 1995. Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. J. Power Sources 55:73–79 [Google Scholar]
  114. Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME. 114.  et al. 2006. Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177:3193–98 [Google Scholar]
  115. Bucher E, Sitte W. 115.  2011. Long-term stability of the oxygen exchange properties of (La,Sr)1−z(Co,Fe)O3−δ in dry and wet atmospheres. Solid State Ionics 192:480–82 [Google Scholar]
  116. Bucher E, Sitte W, Klauser F, Bertel E. 116.  2011. Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600°C in dry and humid atmospheres. Solid State Ionics 191:61–67 [Google Scholar]
  117. Yan L, Salvador PA. 117.  2012. Substrate and thickness effects on the oxygen surface exchange of La0.7Sr0.3MnO3 thin films. ACS Appl. Mater. Interfaces 4:2541–50 [Google Scholar]
  118. Tietz F, Mai A, Stöver D. 118.  2008. From powder properties to fuel cell performance—a holistic approach for SOFC cathode development. Solid State Ionics 179:1509–15 [Google Scholar]
  119. Taskin AA, Lavrov AN, Ando Y. 119.  2005. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett. 86:091910 [Google Scholar]
  120. Parfitt D, Chroneos A, Tarancón A, Kilner JA. 120.  2011. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. J. Mater. Chem. 21:2183–86 [Google Scholar]
  121. Seymour ID, Tarancón A, Chroneos A, Parfitt D, Kilner JA, Grimes RW. 121.  2012. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics 216:41–43 [Google Scholar]
  122. Burriel M, Peña-Martínez J, Chater RJ, Fearn S, Berenov AV. 122.  et al. 2012. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem. Mater. 24:613–21 [Google Scholar]
  123. Zapata J, Burriel M, García P, Kilner JA, Santiso J. 123.  2013. Anisotropic 18O tracer diffusion in epitaxial films of GdBaCo2O5+δ cathode material with different orientations. J. Mater. Chem. A 1:7408–14 [Google Scholar]
  124. Hu Y, Hernandez O, Broux T, Bahout M, Hermet J. 124.  et al. 2012. Oxygen diffusion mechanism in the mixed ion-electron conductor NdBaCo2O5+x. J. Mater. Chem. 22:18744–47 [Google Scholar]
  125. Tarancón A, Skinner SJ, Chater RJ, Hernández-Ramírez F, Kilner JA. 125.  2007. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17:3175–81 [Google Scholar]
  126. Tarancón A, Marrero-López D, Peña-Martínez J, Ruiz-Morales J, Núñez P. 126.  2008. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics 179:611–18 [Google Scholar]
  127. Zhao L, Shen J, He B, Chen F, Xia C. 127.  2011. Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 36:3658–65 [Google Scholar]
  128. Kim J-H, Manthiram A. 128.  2008. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155:B385–90 [Google Scholar]
  129. Kim J-H, Mogni L, Prado F, Caneiro A, Alonso JA, Manthiram A. 129.  2009. High temperature crystal chemistry and oxygen permeation properties of the mixed ionic–electronic conductors LnBaCo2O5+δ (Ln = lanthanide). J. Electrochem. Soc. 156:B1376–82 [Google Scholar]
  130. Zhou Q, Wang F, Shen Y, He T. 130.  2010. Performances of LnBaCo2O5+x−Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195:2174–81 [Google Scholar]
  131. Zhang K, Ge L, Ran R, Shao Z, Liu S. 131.  2008. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 56:4876–89 [Google Scholar]
  132. Kim G, Wang S, Jacobson AJ, Reimus L, Brodersen P, Mims CA. 132.  2007. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17:2500–5 [Google Scholar]
  133. Zhu C, Liu X, Yi C, Yan D, Su W. 133.  2008. Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. J. Power Sources 185:193–96 [Google Scholar]
  134. Che X, Shen Y, Li H, He T. 134.  2013. Assessment of LnBaCo1.6Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. J. Power Sources 222:288–93 [Google Scholar]
  135. Li X, Jiang X, Xu H, Xu Q, Jiang L. 135.  et al. 2013. Scandium-doped PrBaCo2−xScxO6−δ oxides as cathode material for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 38:12035–42 [Google Scholar]
  136. Pang S, Jiang X, Li X, Wang Q, Su Z. 136.  2012. Characterization of Ba-deficient PrBa1−xCo2O5+δ as cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 204:53–59 [Google Scholar]
  137. Pang SL, Jiang XN, Li XN, Xu HX, Jiang L. 137.  et al. 2013. Structure and properties of layered-perovskite LaBa1−xCo2O5+δ (x = 0–0.15) as intermediate-temperature cathode material. J. Power Sources 240:54–59 [Google Scholar]
  138. Kim J-H, Prado F, Manthiram A. 138.  2008. Characterization of GdBa1−xSrxCo2O5+δ (0 ≤ x ≤ 1.0) double perovskites as cathodes for solid oxide fuel cells. J. Electrochem. Soc. 155:B1023–28 [Google Scholar]
  139. Jiang L, Wei T, Zeng R, Zhang W-X, Huang Y-H. 139.  2013. Thermal and electrochemical properties of PrBa0.5Sr0.5Co2−xFexO5+δ (x = 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources 232:279–85 [Google Scholar]
  140. Choi S, Yoo S, Kim J, Park S, Jun A. 140.  et al. 2013. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci. Rep. 3:2426 [Google Scholar]
  141. Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner JA. 141.  2011. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4:2774–89 [Google Scholar]
  142. Claus J, Borchardt G, Weber S, Hiver JM, Scherrer S. 142.  1996. Combination of EBSP measurements and SIMS to study crystallographic orientation dependence of diffusivities in a polycrystalline material: oxygen tracer diffusion in La2−xSrxCuO4+/−δ. Mater. Sci. Eng. B 38:251–57 [Google Scholar]
  143. Bassat J-M, Burriel M, Wahyudi O, Castaing R, Ceretti M. 143.  et al. 2013. Anisotropic oxygen diffusion properties in Pr2NiO4+δ and Nd2NiO4+δ single crystals. J. Phys. Chem. C 117:26466–72 [Google Scholar]
  144. Burriel M, Garcia G, Santiso J, Kilner JA, Chater RJ, Skinner SJ. 144.  2008. Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J. Mater. Chem. 18:416–22 [Google Scholar]
  145. Bassat JM, Odier P, Villesuzanne A, Marin C, Pouchard M. 145.  2004. Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics 167:341–47 [Google Scholar]
  146. Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA. 146.  2013. Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. J. Power Sources 238:442–53 [Google Scholar]
  147. Mesguich D, Bassat JM, Aymonier C, Brüll A, Dessemond L, Djurado E. 147.  2013. Influence of crystallinity and particle size on the electrochemical properties of spray pyrolyzed Nd2NiO4+δ powders. Electrochim. Acta 87:330–35 [Google Scholar]
  148. Ferchaud C, Grenier J-C, Zhang-Steenwinkel Y, van Tuel MMA, van Berkel FPF, Bassat J-M. 148.  2011. High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J. Power Sources 196:1872–79 [Google Scholar]
  149. Hernández AM, Mogni L, Caneiro A. 149.  2010. La2NiO4+δ as cathode for SOFC: reactivity study with YSZ and CGO electrolytes. Int. J. Hydrogen Energy 35:6031–36 [Google Scholar]
  150. Sayers R, Liu J, Rustumji B, Skinner SJ. 150.  2008. Novel K2NiF4-type materials for solid oxide fuel cells: compatibility with electrolytes in the intermediate temperature range. Fuel Cells 8:338–43 [Google Scholar]
  151. Lalanne C, Prosperi G, Bassat J, Mauvy F, Fourcade S. 151.  et al. 2008. Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J. Power Sources 185:1218–24 [Google Scholar]
  152. Santiso J, Burriel M. 152.  2010. Deposition and characterisation of epitaxial oxide thin films for SOFCs. J. Solid State Electrochem. 15:985–1006 [Google Scholar]
  153. Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ. 153.  2009. Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194:119–29 [Google Scholar]
  154. Lai B-K, Kerman K, Ramanathan S. 154.  2010. On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: structure, stress engineering and in situ observation of fuel cell membranes during operation. J. Power Sources 195:5185–96 [Google Scholar]
  155. Adler SB.155.  2004. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104:4791–843 [Google Scholar]
  156. Tao SW, Wu QY, Peng DK, Meng GY. 156.  2000. Electrode materials for intermediate temperature proton-conducting fuel cells. J. Appl. Electrochem. 30:153–57 [Google Scholar]
  157. Zhang C, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F. 157.  et al. 2010. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat. Mater. 9:944–49 [Google Scholar]
  158. Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD. 158.  et al. 2012. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ. Sci. 5:6081–88 [Google Scholar]
  159. Crumlin EJ, Mutoro E, Hong WT, Biegalski MD, Christen HM. 159.  et al. 2013. In situ ambient pressure X-ray photoelectron spectroscopy of cobalt perovskite surfaces under cathodic polarization at high temperatures. J. Phys. Chem. C 117:16087–94 [Google Scholar]
  160. Kilner JA, Skinner SJ, Brongersma HH. 160.  2011. The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS. J. Solid State Electrochem. 15:861–76 [Google Scholar]
  161. Fearn S, Kilner JA, Grehl T. 161.  2008. The surface characterisation of perovskite SOFC cathode materials and its relationship to oxygen exchange kinetics. Proc. Eur. SOFC Forum, 8th, Lucerne, Switz. [Google Scholar]
  162. Viitanen MM, von Welzenis RG, Brongersma HH, van Berkel FPF. 162.  2002. Silica poisoning of oxygen membranes. Solid State Ionics 150:223–28 [Google Scholar]
  163. Druce J, Ishihara T, Kilner J. 163.  2014. Surface composition of perovskite-type materials studied by Low Energy Ion Scattering (LEIS). Solid State Ionics In press
  164. Ortiz-Vitoriano N, de Larramendi IR, Cook SN, Burriel M, Aguadero A. 164.  et al. 2013. The formation of performance enhancing pseudo-composites in the highly active La1−xCaxFe0.8Ni0.2O3 system for IT-SOFC application. Adv. Funct. Mater. 23:5131–39 [Google Scholar]
  165. Fullarton IC, Jacobs JP, van Benthem HE, Kilner JA, Brongersma HH. 165.  et al. 1995. Study of oxygen ion transport in acceptor doped samarium cobalt oxide. Ionics 1:51–58 [Google Scholar]
  166. Kilner JA, Téllez H, Burriel M, Cook SM, Druce J. 166.  2013. The application of ion beam analysis to mass transport studies in mixed electronic ionic conducting electrodes. ECS Trans 57:1701–8 [Google Scholar]
  167. Burriel M, Wilkins S, Hill JP, Muñoz-Márquez MA, Brongersma HH. 167.  et al. 2014. Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 7:311–16 [Google Scholar]
  168. Jacobson AJ.168.  2010. Materials for solid oxide fuel cells. Chem. Mater. 22:660–74 [Google Scholar]
  169. Sun CW, Stimming U. 169.  2007. Recent anode advances in solid oxide fuel cells. J. Power Sources 171:247–60 [Google Scholar]
  170. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ. 170.  et al. 2004. Advanced anodes for high-temperature fuel cells. Nat. Mater. 3:17–27 [Google Scholar]
  171. Spacil HS.171.  1970. Electrical device including nickel-containing stabilized zirconia electrode. US Patent No. 3,503,809
  172. Tao SW, Cowin PI, Lan R. 172.  2012. Novel anode materials for solid oxide fuel cells. See Ref. 56 445–77
  173. Bishop SR, Marrocchelli D, Chatzichristodoulou C, Perry NH, Mogensen MB. 173.  et al. 2014. Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44:205–39 [Google Scholar]
  174. Parfitt D, Chroneos A, Kilner JA, Grimes RW. 174.  2010. Molecular dynamics study of oxygen diffusion in Pr2NiO4+δ. Phys. Chem. Chem. Phys. 12:6834–36 [Google Scholar]
  175. Berenov A, Wood H, Atkinson A. 175.  2007. Evaluation of La0.8Sr0.2Cu1−xMnxOy double perovskite for use in SOFCs. J. Electrochem. Soc 154:B1362–67 [Google Scholar]
  176. Ahlgren EO, Poulsen FW. 176.  1996. Thermoelectric power and electrical conductivity of strontium-doped lanthanum manganite. Solid State Ionics 86–88:1173–78 [Google Scholar]
  177. De Souza RA, Kilner JA. 177.  1998. Oxygen transport in La1−xSrxMn1−yCoyO3+/−δ perovskites. Part I. Oxygen tracer diffusion. Solid State Ionics 106:175–87 [Google Scholar]
  178. Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P. 178.  1995. Crystal structure, electrical and magnetic properties of La1−xSrxCoO3−y. Solid State Ionics 80:189–99 [Google Scholar]
  179. Esquirol A, Kilner J, Brandon N. 179.  2004. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Ge0.2O2−x composite cathode for IT-SOFCs. Solid State Ionics 175:63–67 [Google Scholar]
  180. Wei B, Z, Huang X, Miao J, Sha X. 180.  et al. 2006. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7). J. Eur. Ceram. Soc. 26:2827–32 [Google Scholar]
  181. Wang L, Merkle R, Maier J, Acartürk T, Starke U. 181.  2009. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films. Appl. Phys. Lett. 94:071908 [Google Scholar]
  182. Sayers R, De Souza RA, Kilner JA, Skinner SJ. 182.  2010. Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate. Solid State Ionics 181:386–91 [Google Scholar]
  183. Boehm E, Bassat J, Dordor P, Mauvy F, Grenier J, Stevens P. 183.  2005. Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides. Solid State Ionics 176:2717–25 [Google Scholar]
  184. Adler SB. 184.  1998. Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes. Solid State Ionics 111:125–34 [Google Scholar]
  185. Januschewsky J, Ahrens M, Opitz A, Kubel F, Fleig J. 185.  2009. Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv. Funct. Mater. 19:3151–56 [Google Scholar]
  186. Peters C, Weber A, Ivers-Tiffee E. 186.  2008. Nanoscaled (La0.5Sr0.5)CoO3-δ thin film cathodes for SOFC application at 500 degrees C < T < 700 degrees C. J. Electrochem. Soc. 155:B730–37 [Google Scholar]
  187. Heel A, Holtappels P, Graule T. 187.  2010. On the synthesis and performance of flame-made nanoscale La0.6Sr0.4CoO3-δ and its influence on the application as an intermediate temperature solid oxide fuel cell cathode. J. Power Sources 195:6709–18 [Google Scholar]
  188. van Berkel FPF, Brussel S, van Tuel M, Schoemakers G, Rietveld B, Aravind PV. 188.  2006. Proc. Eur. Solid Oxide Fuel Cell Forum, 7th, Lucerne, Switz. [Google Scholar]
  189. Wang S, Yoon J, Kim G, Huang D, Wang H, Jacobson AJ. 189.  2010. Electrochemical properties of nanocrystalline La0.5Sr0.5CoO3−x thin films. Chem. Mater. 22:776–82 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070813-113426
Loading
/content/journals/10.1146/annurev-matsci-070813-113426
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error