Abstract

We investigated the effect of high hydrostatic pressure on the normal grain growth in 2-D aluminium foils. The time dependence of the mean grain area was obtained. It was shown that normal grain growth takes place both at atmospheric pressure and under high hydrostatic pressure. The grain growth rate decreases by a factor 1.3 under high pressure. The activation volume for grain growth was 0.13 of the atomic volume. It was shown that high pressure strongly influences the ratio oflow angle boundaries and general boundaries at the early stages of secondary recrystallization.