Skip to main content

Natural Fibre Cross Sectional Area, Its Variability and Effects on the Determination of Fibre Properties

Buy Article:

$107.14 + tax (Refund Policy)

The results of a study on the measurement of fibre bundle cross section and its variability in flax and sisal fibres are presented. Cross section values obtained from “diameter” measurements were more than double the values obtained from actual observation of cross sections of the same individual fibre bundles. The overall conclusion is that “diameter” measurement is not an attractive method for accurate estimation of cross sectional area of these natural fibre bundles. This conclusion is significant for researchers engaged in micromechanical investigation of natural fibre composites since differences in fibre cross section translate directly into differences of the same magnitude in the values obtained for the fibre modulus and strength. The error in fibre bundle cross section introduced by the “diameter” method scales with the average fibre bundle “diameter” which may also result in erroneous observations of fibre modulus and strength which scale inversely with natural fibre bundle “diameter.” The difference in average cross section observed from fibre bundle to fibre bundle was significantly greater than the variation along the length of each individual fibre bundle. The minimum to maximum cross section variability of individual flax fibre bundles was found to be approximately twice that observed for sisal fibre bundles. A simple model based on a non-circular fibre bundle cross section is introduced and shown to explain these observations.

Keywords: CROSS SECTION; DIAMETER; MECHANICAL PROPERTIES; NATURAL FIBRE

Document Type: Research Article

Publication date: 01 August 2012

More about this publication?
  • The goal of the creation of a biobased economy is challenging to agriculture, forestry, academia, government and industry. The extractable resources of the Earth are finite, regardless of the quibble over when they will be depleted. The economic, political and social demands for biobased chemicals, materials and energy are expected to radically transform the materials industries, particularly the plastics industry as well as the biofuel industry. These changes will be based on the principles of sustainability, eco-efficiency, industrial ecology, and green chemistry and engineering. In keeping with the growth of knowledge in this field, there is a strong need for a forum to share original research related to biobased materials and bioenergy. The Journal of Biobased Materials and Bioenergy (JBMB) has been created as an international peer-reviewed periodical to fulfill the need for communication in these research areas. This journal will encompass related research activities in all fields of science, engineering and the life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content