Skip to main content

Role of Roughness Parameters on the Tribology of Randomly Nano-Textured Silicon Surface

Buy Article:

$107.14 + tax (Refund Policy)

This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (R a, R dq) and profile periodicity (R sk, R ku, l c) that influence asperity–asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing R a is justifiable by a more consistent increasing of kurtosis R ku.

Keywords: AFM; ROUGHNESS; SILICON; TRIBOLOGY; WETTABILITY

Document Type: Research Article

Publication date: 01 October 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content