Skip to main content

Oxygen Electroreduction on Multi-Walled Carbon Nanotube Supported Metal Phthalocyanines and Porphyrins in Alkaline Media

Buy Article:

$107.14 + tax (Refund Policy)

Metal phthalocyanine and porphyrin modified electrodes were prepared using multi-walled carbon nanotubes (MWCNTs) as a support material. The catalyst materials were heat-treated before electrochemical testing. X-ray photoelectron spectroscopic study was carried out in order to examine the surface composition. The electroreduction of oxygen has been investigated on Fe phthalocyanine/MWCNT, Co phthalocyanine/MWCNT, Fe porphyrin/MWCNT and Co porphyrin/ MWCNT catalysts. Electrochemical experiments were carried out in 0.1 M KOH employing the rotating disk electrode (RDE) method. The glassy carbon (GC) disk electrodes were modified with MN4 macrocycle/MWCNT catalysts using Tokuyama AS-4 ionomer. Electrochemical characterization of the materials showed that all the MN4 macrocycle/MWCNT modified GC electrodes are highly active for the reduction of oxygen in alkaline solutions. Particularly high electrocatalytic activity was observed for porphyrin-based electrodes heat-treated at 800 °C. The RDE results obtained are significant for the development of alkaline membrane fuel cells.

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content