Skip to main content

Synthesis and Photocatalytic Properties of CuO Nanostructures

Buy Article:

$107.14 + tax (Refund Policy)

CuO nanostructures were grown by decomposition of a mixture of Cu(CH3COO)2·H2O and NaCl at different temperatures. The nanostructure properties were studied by X-ray diffractometer, scanning electron microscope and Raman spectroscope. Photodegradation activity of the nanostructures towards methyl orange was also examined. CuO spheres and hollow spheres composed of nanoparticles were obtained. CuO nanoparticle size increases with an increase in the growth temperature. More specifically, it increases slowly when the temperature was lower than 280 °C and increases dramatically in a higher temperature range. The degradation activity is sensitive to the nanostructure growth temperatures, but the degradation activity varies with the growth temperatures or the size of nanoparticles composing of nanospheres non-monotonously. The hollow spheres composed of nanoparticles grown at 280 °C show superior photocatalytic activity towards the degradation of methyl orange than that grown at lower and higher temperatures.

Document Type: Research Article

Publication date: 01 May 2014

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content