Skip to main content

Open Access Effects of Homogenous–Heterogeneous Reactions on Radiative NaCl-CNP Nanofluid Flow Past a Convectively Heated Vertical Riga Plate

In this paper, the boundary layer flow and heat transfer of sodium chloride (NaCl)-carbon nanopowder (CNP) nanofluid over a Riga-plate with homogeneous–heterogeneous quartic autocatalysis chemical reaction in the presence of convective heating and thermal radiation is investigated. The similarity transformed nonlinear governing equations are obtained and tackled numerically using shooting technique. Effects of thermo-physical parameters on the nanofluid velocity, temperature, chemical species concentration, skin friction, and local Nusselt number are discussed quantitatively. It is found that momentum, thermal and concentration boundary layer thicknesses diminished due to Lorentz force effects. An enhancement in values of Biot number, nanoparticle volume fraction and thermal radiation parameter upsurges nanofluid temperature causing diminution in thermal boundary layer thickness. The skin friction coefficient exhibits increasing trend in the order of nanoparticles (carbon nanopowder (CNP) < graphite < carbon black (CB)) at the relatively higher values of strength of heterogeneous reaction.

Keywords: CNP NANOFLIUD; CONVECTIVE BOUNDARY CONDITION; HOMOGENOUS–HETEROGENEOUS REACTIONS; THERMAL RADIATION; VERTICAL RIGA PLATE

Document Type: Research Article

Publication date: 01 August 2018

More about this publication?
  • Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author's photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content