Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-30T01:27:49.526Z Has data issue: false hasContentIssue false

Syntheses and characterization of zeolites K-F and W type using a diatomite precursor

Published online by Cambridge University Press:  05 July 2018

D. Novembre*
Affiliation:
Dipartimento di Ingegneria e Geologia, Universita` G. D’Annunzio, Chieti Scalo, 66100, Italy
C. Pace
Affiliation:
Dipartimento di Ingegneria e Geologia, Universita` G. D’Annunzio, Chieti Scalo, 66100, Italy
D. Gimeno
Affiliation:
Departamento de Geoquímica, Petrologia i Prospecció Geolgica, Facultat de Geologia, Universitat de Barcelona, 08028, Spain
*

Abstract

Zeolites K-F and W (EDI and MER types) were synthesized hydrothermally using a natural rock as raw material. Chemical treatments were carried out on a diatomitic rock (containing opaline silica) from Crotone (Calabria, Italy) in order to separate/obtain potassium silicate, a reagent necessary for synthesizing zeolites. Synthesis experiments were performed by mixing the obtained siliceous solution with potassium hydroxide and alumina in varying proportions at 150°C and room pressure. Four synthesis series were performed to form zeolite K-F (EDI) and zeolite W (MER).

The chemical-physical and morphological characterization of the zeolite phases were carried out. Cell parameters were calculated using the Rietveld method. Infrared, thermal and nuclear magnetic resonance (29Si) experiments confirmed the high quality of the zeolite products. The amorphous phase in the synthesis powders was estimated with quantitative phase analysis using the combined Rietveld and reference intensity ratio methods.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdmeziem-Hamoudi, K., and Siffert, B. (1989) Synthesis of molecular sieve zeolites from a smectite-type clay material. Applied Clay Science, 4, 19.CrossRefGoogle Scholar
Armbruster, T. and Gunter, M.E., (2001) Crystal structures of natural zeolites. Pp. 168 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Aznar, A.J., and La Iglesia, A. (1985) Obtención de zeolitas a partir de arcillas aluminosas espan˜olas. Boletín Geologíco y Minero, 96, 541549.Google Scholar
Barrer, R.M., and Baynham, J.W., (1956) The hydrothermal chemistry of the silicates. Synthetic potassium aluminosilicates. Journal of the Chemical Society, 1956, 28822891.CrossRefGoogle Scholar
Barrer, R.M., and Mainwaring, D.E., (1972) Chemistry of soil minerals. Part XIII. Reactions of meta kaolinite with single and mixed bases. Journal of the Chemical Society Dalton, 22, 25342546.CrossRefGoogle Scholar
Barrer, R.M., and Munday, B.M., (1971) Cation exchange in the synthetic zeolite K-F. Journal of the Chemical Society (A), 1971, 29142921.CrossRefGoogle Scholar
Barrer, R.M., Cole, J.F., and Sticher, H. (1968) Chemistry of soil minerals. Part V.1 Low temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society (A), 1968, 24752485.CrossRefGoogle Scholar
Barrer, M., Beaumont, R. and Colella C. (1974) Chemistry of soil minerals. Part XIV. Action of some basic solutions on metakaolinite and kaolinite. Journal of the Chemical Society Dalton, 9, 934941.CrossRefGoogle Scholar
Barron, J.A (1985) Miocene to Holocene planktic diatoms. Pp. 763810 in: Plankton Stratigraphy Volume 2, (H.M. Bolli, J.B., Saunders and K. Perch- Nielsen, editors). Cambridge Earth Science Series, Cambridge University Press, Cambridge, UK.Google Scholar
Belver, C. and Vicente, M.A., (2006) Easy synthesis of K-F zeolite from kaolin, and characterization of this zeolite. Journal of Chemical Education, 83(10), 15411542.CrossRefGoogle Scholar
Bieniok, A., Bornholdt, K., Brendel, U. and Baur, H. (1996) Synthesis and crystal structure of zeolite W, resembling the mineral merlinoite. Journal of Materials Chemistry, 6(2), 271275.CrossRefGoogle Scholar
Biz, S. and Ocelli, M.L., (1998) Synthesis and characterization of mesostructured materials. Catalysis Review: Science and Engineering, 40, 329407.CrossRefGoogle Scholar
Boukadir, D., Bettahar, N. and Derriche, Z. (2002) Etude de la synthese des zeolites 4A et HS a partir de produits naturels. Annales de Chimie-Science des Materiaux, 27, 113.CrossRefGoogle Scholar
Breck, D.W., (1973) Process for removal of ammonia from waste water streams. US Patent number: 3, 723/ 308.Google Scholar
Breck, D.W., (1984) Zeolite Molecular Sieves. Structure, Chemistry and Use. Robert E. Krieger Publishing Company, Malabar, Florida, USA, 771 pp.Google Scholar
Chaisena, A. and Rangsriwatananon, K. (2005) Synthesis of sodium zeolites from natural and modified diatomite. Materials Letters, 59, 14741479.CrossRefGoogle Scholar
Colella, C. and Aiello, R. (1975) Sintesi idrotermale di zeoliti da vetro riolitico in presenza di basi miste sodico-potassiche. Rendiconti Societa` Italiana di Mineralogia e Petrologia, 31, 641652.Google Scholar
Colella, C., Aiello, R. and Di Ludovico, V. (1977) Synthesis of merlinoite: Societa` Italiana di Mineralogia e Petrologia, 33, 511518.Google Scholar
Corma, A. (1997) Microporous molecular sieve materials and their use in catalysis. Chemistry Review, 97, 23732419.CrossRefGoogle ScholarPubMed
Covian, I. (1991) Sintesis de zeolite 13X para su uso en Detergentes. Unpublished PhD thesis. Universidad Complutense de Madrid, Spain, 392 pp.Google Scholar
Fernandez-Turiel, J.L., Gimeno, D., Rodríguez, J.J., Carnicero, M. and Valero, F. (2003) Spatial and seasonal water quality in a mediterranean catchment: the Llobregat river (NE Spain) Environmental Geochemistry and Health, 25, 253474.Google Scholar
Flanigen, E.M., Khatami, H.A., and Szymanski, H.A., (1971) Infrared structural study of zeolite frameworks. Pp. 201229 in: Molecular Sieve Zeolites I (E.M. Flanigen and L.B. Sand, editors). Advances in Chemistry Series, Vol. 101. American Chemical Society, Washington DC..Google Scholar
Ghose, S., Hexiong, Y. and Weidner, J. (1990) Crystal growth and structure of K2Al2Si3O10· KCl: A new anhydrous zeolite type phase with the edingtonitenframework. American Mineralogist, 75, 947950.Google Scholar
Gualtieri, A.F., (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. Journal of Applied Crystallography, 33, 267278.CrossRefGoogle Scholar
Gualtieri, A.F., (2001) Synthesis of sodium zeolites from a natural halloysite. Physics and Chemistry of Minerals, 28, 719728.CrossRefGoogle Scholar
Hasewaga, Y., Nagase, T., Kiyozumi, Y. and Mizukami, F. (2010) Preparation, characterization, and dehydration performance of MER-type zeolite membranes. Separation and Purification Technology, 73, 2531.CrossRefGoogle Scholar
Hou, J., Yuan J. and Shang, R. (2012) Synthesis and characterization of zeolite W and its ion-exchange properties to K+ in sea water. Powder Technology, 226, 222224.CrossRefGoogle Scholar
Kawano, M. and Tomita, K. (1997) Experimental study on the formation of zeolites from obsidian by interaction with NaOH and KOH solutions at 150°C and 200°C. Clay and Clay Minerals, 45, 365377.CrossRefGoogle Scholar
Kosorukov, A.A., and Nadel, L.G., (1985) KF zeolite and its Rubidium and Caesium analogues. Russian Journal of Inorganic Chemistry, 7, 961963.Google Scholar
Jaccula, V.S., Williams, C.D., Hocking, T.J., and Fullen, M.A., (2006) High selectivity and affinity of Linde type F towards NH4 + on application as a soil amendment for maize growth. Microporous and Mesoporous Materials, 88, 101104.CrossRefGoogle Scholar
Juan, R., Hernández, S., Andrés, J. and Ruiz, C. (2007) Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated fly ash. Fuel, 86, 18111821.CrossRefGoogle Scholar
Larson, A.C., and Von Dreele, R.B., (1997) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. LAUR 86748. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Lippmaa, E., Mägi, M., Samoson, A., Englehardt, G. and Grimmer, A.R., (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR. Journal of the American Chemical Society, 102, 44894893.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M., Samoson, A., Tarmak, M. and Englehardt, G. (1981) Investigation of the structure of zeolite by solid-state high-resolution 29Si NMR spectroscopy. Journal of the American Chemical Society, 103, 49924996.CrossRefGoogle Scholar
Medina, A., Gamero, P., Almanza, J.M., Vargas, A., Montoya, A., Vargas, G. and Izquierdo, M. (2010) Flay ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption. Journal of Hazardous Materials, 181, 91104.CrossRefGoogle Scholar
Milton, R.M., (1961) Crystalline Zeolite. US Patent Number: 3, 012/853.Google Scholar
Miyaji, F., Murakami, T. and Suyama, Y. (2009) Formation of Linde F zeolite by KOH treatment of coal fly ash, Journal of the Ceramic Society of Japan, 117(5), 619622.CrossRefGoogle Scholar
Novembre, D., Di Sabatino, B., Gimeno, D., Garcia Valles, M. and Martinez-Manent, S., (2004) Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitized rocks (Vico Volcano, Italy). Microporous and Mesoporous Materials, 75, 111.CrossRefGoogle Scholar
Novembre, D., Di Sabatino, B. and Gimeno, D. (2005) Synthesis of Na-A zeolite from 10 Å halloysite and a new crystallization kinetic model for the transformation of Na-A into HS zeolite. Clays and Clay Minerals, 53, 2836.CrossRefGoogle Scholar
Novembre, D., Di Sabatino, B., Gimeno, D. and Pace, C. (2011) Synthesis and characterization of Na-X, Na-A, Hydroxisodalite and Na-P zeolites from metakaolinite. Clay Minerals, 46, 336354.CrossRefGoogle Scholar
Passaglia, E., Pongiluppi, D. and Rinaldi, R. (1977) Merlinoite, a new mineral of the zeolite group. Neues Jahrbuch für Mineralogie Monatshefte, 1977, 355364.Google Scholar
Rees, L.V.C. and Chandrasekhar, S. (1993) Formation of zeolite from the system Na2O–Al2O3– SiO2–H2O in alkaline medium (pH>10). Zeolites, 13, 524533.CrossRefGoogle Scholar
Ricci, G.M., (1994) Sintesi della zeolite K-W (MERLINOITE) e sua applicazione nella depurazione di acque reflue. Unpublished PhD thesis, Universita` degli Studi “La Sapienza” di Roma, Italy, 123 pp.Google Scholar
Rios, C.A., and Williams, C.D., (2010) Hydrothermal transformation of kaolinite in the system K2O–SiO2–Al2O3–H2O. Dyna, 77(163), 5563.Google Scholar
Robert, J.L., Della Ventura, G. and Thauvin, G. (1989a) The infrared OH-stretching region of synthetic richterites in the system Na2O–K2O–CaO–MgO– SiO2–H2O–HF. European Journal Mineralogy, 1, 203211.CrossRefGoogle Scholar
Ruggieri, F., Fernandez–Turiel, J.L., Saavedra, J., Gimeno, D., Polanco, E. and Naranjo, J.A., (2011) Environmental geochemistry of recent volcanic ashes from Southern Andes. Environmental Chemistry, 8, 236247.CrossRefGoogle Scholar
Sanhueza, V., Kelm, U. and Cid, R. (2003) Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. Chemical Technology and Biotechnology, 78, 485488.CrossRefGoogle Scholar
Sanhueza, V., Kelm, U., Cid, R. and López-Escobar, L., (2004) Synthesis of MSM-5 from diatomite: a case of zeolite synthesis from a natural material. Chemical Technology and Biotechnology, 79, 686690.CrossRefGoogle Scholar
Seo, Y.H., Prasetyanto, E.A., Jiang, N.Z., Oh, S.M., and Park, S.E., (2010) Catalytic dehydration of methanol over synthetic zeolite W. Microporous and Mesoporous Materials, 128, 108114.CrossRefGoogle Scholar
Sherman, J.D., (1977) Identification and characterization of zeolites synthesized in the K2O–Al2O3–SiO2– H2O system. Pp. 3042 in: Molecular Sieves II (J.R. Katzer, editor). Symposium Series, 40. American Chemical Society, Washington, DC.Google Scholar
Skofteland, B.M., Ellestad, O.H., and Lillerud, K.P., (2001) Potassium merlinoite: crystallization, structural and thermal properties. Microporous and Mesoporous Materials, 43, 6171.CrossRefGoogle Scholar
Tambuyzer, E. and Bosmans, H.J., (1976) The crystal structure of synthetic zeolite K-F. Acta Crystallographica, B32, 17141719.CrossRefGoogle Scholar
Toby, B.H., (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.CrossRefGoogle Scholar
Yakubovich, O.V., Massa, W., Gavrilenko, P.G., and Pekov, I.V., (2005) Crystal structure of Chabazite K. Crystallography Reports, 50(4), 544553.Google Scholar