Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

Optimal lower and upper bounds for the geometric convex combination of the error function

verfasst von: Yong-Min Li, Wei-Feng Xia, Yu-Ming Chu, Xiao-Hui Zhang

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

For \(x\in R\), the error function \(\operatorname{erf}(x)\) is defined as
$$\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x}e^{-t^{2}}\,dt. $$
In this paper, we answer the question: what are the greatest value p and the least value q, such that the double inequality \(\operatorname {erf}(M_{p}(x,y;\lambda))\leq G(\operatorname{erf}(x),\operatorname {erf}(y);\lambda)\leq\operatorname{erf}(M_{q}(x,y;\lambda))\) holds for all \(x,y\geq1\) (or \(0< x,y<1\)) and \(\lambda\in(0,1)\)? Here, \(M_{r}(x,y;\lambda)=(\lambda x^{r}+(1-\lambda)y^{r})^{1/r}\) (\(r\neq0\)), \(M_{0}(x,y;\lambda)=x^{\lambda}y^{1-\lambda}\) and \(G(x,y;\lambda )=x^{\lambda}y^{1-\lambda}\) are the weighted power and the weighted geometric mean, respectively.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

For \(x\in R\), the error function \(\operatorname{erf}(x)\) is defined as
$$\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x}e^{-t^{2}}\,dt. $$
The most important properties of this function are collected, for example, in [1, 2]. In the recent past, the error function has been a topic of recurring interest, and a great number of results on this subject have been reported in the literature [316]. It might be surprising that the error function has application in the field of heat conduction besides probability [17, 18].
In 1933, Aumann [19] introduced a generalized notion of convexity, the so-called MN-convexity, when M and N are mean values. A function \(f:[0,\infty)\to[0,\infty)\) is MN-convex if \(f(M(x,y))\leq N(f(x),f(y))\) for \(x,y\in[0,\infty)\). The usual convexity is the special case when M and N both are arithmetic means. Furthermore, the applications of MN-convexity reveal a new world of beautiful inequalities which involve a broad range of functions from the elementary ones, such as sine and cosine function, to the special ones, such as the Γ function, the Gaussian hypergeometric function, and the Bessel function. For the details as regards MN-convexity and its applications the reader is referred to [2025].
Let \(\lambda\in(0,1)\), we define \(A(x,y;\lambda)=\lambda x+(1-\lambda)y\), \(G(x,y;\lambda)=x^{\lambda}y^{1-\lambda}\), \(H(x,y;\lambda)=\frac{xy}{\lambda y+(1-\lambda)x}\) and \(M_{r}(x,y;\lambda)=(\lambda x^{r}+(1-\lambda)y^{r})^{1/r}\) (\(r\neq0\)), \(M_{0}(x,y;\lambda)=x^{\lambda}y^{1-\lambda}\). These are commonly known as weighted arithmetic mean, weighted geometric mean, weighted harmonic mean, and weighted power mean of two positive numbers x and y, respectively. Then it is well known that the inequalities
$$H(x,y;\lambda)=M_{-1}(x,y;\lambda)< G(x,y;\lambda)=M_{0}(x,y; \lambda )< A(x,y;\lambda)=M_{1}(x,y;\lambda) $$
hold for all \(\lambda\in(0,1)\) and \(x,y>0\) with \(x\neq y\).
By elementary computations, one has
$$ \lim_{r\to-\infty}M_{r}(x,y;\lambda)=\min(x,y) $$
(1.1)
and
$$\lim_{r\to+\infty}M_{r}(x,y;\lambda)=\max(x,y). $$
In [26], Alzer proved that \(c_{1}(\lambda)=\frac{\lambda+(1-\lambda )\operatorname{erf}(1)}{\operatorname{erf}(1/(1-\lambda))}\) and \(c_{2}(\lambda)=1\) are the best possible factors such that the double inequality
$$ c_{1}(\lambda)\operatorname{erf}\bigl(H(x,y;\lambda) \bigr)\leq A\bigl(\operatorname{erf}(x),\operatorname{erf}(y);\lambda\bigr)\leq c_{2}(\lambda)\operatorname{erf}\bigl(H(x,y;\lambda)\bigr) $$
(1.2)
holds for all \(x, y \in[1,+\infty)\) and \(\lambda\in(0,1/2)\).
Inspired by (1.2), it is natural to ask: does the inequality \(\operatorname{erf}(M(x,y))\leq N(\operatorname{erf}(x),\operatorname {erf}(y))\) hold for other means M, N, such as geometric, harmonic or power means?
In [27, 28], the authors found the greatest values \(\alpha_{1}\), \(\alpha_{2}\) and the least values \(\beta_{1}\), \(\beta_{2}\), such that the double inequalities
$$\operatorname{erf}\bigl(M_{\alpha_{1}}(x,y;\lambda)\bigr)\leq A\bigl( \operatorname {erf}(x),\operatorname{erf}(y);\lambda\bigr)\leq\operatorname {erf} \bigl(M_{\beta_{1}}(x,y;\lambda)\bigr) $$
and
$$\operatorname{erf}\bigl(M_{\alpha_{2}}(x,y;\lambda)\bigr)\leq H\bigl( \operatorname {erf}(x),\operatorname{erf}(y);\lambda\bigr)\leq\operatorname {erf} \bigl(M_{\beta_{2}}(x,y;\lambda)\bigr) $$
hold for all \(x,y\geq1\) (or \(0< x,y<1\)) and \(\lambda\in(0,1)\).
In the following we answer the question: what are the greatest value p and the least value q, such that the double inequality
$$\operatorname{erf}\bigl(M_{p}(x,y;\lambda)\bigr)\leq G\bigl( \operatorname {erf}(x),\operatorname{erf}(y);\lambda\bigr)\leq\operatorname {erf} \bigl(M_{q}(x,y;\lambda)\bigr) $$
holds for all \(x,y\geq1\) (or \(0< x,y<1\)) and \(\lambda\in(0,1)\)?

2 Lemmas

In this section we present two lemmas, which will be used in the proof of our main results.
Lemma 2.1
Let \(r\neq0\), \(r_{0}=-1-\frac{2}{e\sqrt{\pi}\operatorname{erf}(1)}=-1.4926\ldots \) , and \(u(x)=\log\operatorname{erf}(x^{1/r})\). Then the following statements are true:
(1)
if \(r< r_{0}\), then \(u(x)\) is strictly convex on \([1,+\infty)\);
 
(2)
if \(r_{0}\leq r<0\), then \(u(x)\) is strictly concave on \((0,1]\);
 
(3)
if \(r>0\), then \(u(x)\) is strictly concave on \((0,+\infty)\).
 
Proof
Simple computations lead to
$$ u'(x)=\frac{2e^{-x^{2/r}}x^{1/r-1}}{r\sqrt{\pi}\operatorname{erf}(x^{1/r})} $$
(2.1)
and
$$ u''(x)=\frac{2e^{-x^{2/r}}x^{1/r-2}}{r^{2}\sqrt{\pi}\operatorname {erf}^{2}(x^{1/r})}g(x), $$
(2.2)
where
$$ g(x)=\bigl(-2x^{2/r}+1-r\bigr)\operatorname{erf} \bigl(x^{1/r}\bigr)-\frac{2}{\sqrt{\pi }}e^{-x^{2/r}}x^{1/r}. $$
(2.3)
Then
$$\begin{aligned}& g'(x)=4x^{2/r-1}g_{1}(x), \end{aligned}$$
(2.4)
$$\begin{aligned}& g_{1}(x)=-\frac{1}{r}\operatorname{erf}\bigl(x^{1/r} \bigr)-\frac{1}{2\sqrt {\pi}}e^{-x^{2/r}}x^{-1/r}, \end{aligned}$$
(2.5)
and
$$ g_{1}'(x)=\frac{1}{2r^{2}\sqrt{\pi}}e^{-x^{2/r}}x^{-1/r-1} \bigl[(2r-4)x^{2/r}+r\bigr]. $$
(2.6)
We divide the proof into two cases.
Case 1. If \(r<0\), then (2.6), (2.5), and (2.3) lead to
$$\begin{aligned}& g_{1}'(x)< 0, \end{aligned}$$
(2.7)
$$\begin{aligned}& \lim_{x\to0^{+}}g_{1}(x)>0, \qquad \lim _{x\to+\infty}g_{1}(x)=-\infty, \end{aligned}$$
(2.8)
$$\begin{aligned}& \lim_{x\to0^{+}}g(x)=-\infty,\qquad \lim_{x\to+\infty}g(x)=0, \end{aligned}$$
(2.9)
and
$$ g(1)=(-1-r)\operatorname{erf}(1)-\frac{2}{e\sqrt{\pi}}. $$
(2.10)
Inequality (2.7) implies that \(g_{1}(x)\) is strictly decreasing on \([0,+\infty)\).
It follows from the monotonicity of \(g_{1}(x)\) and (2.8) that there exists \(x_{1}\in(0,+\infty)\), such that \(g(x)\) is strictly increasing on \([0,x_{1}]\) and strictly decreasing on \([x_{1},+\infty)\).
From the piecewise monotonicity of \(g(x)\) and (2.9) we clearly see that there exists \(x_{2}\in(0,+\infty)\), such that \(g(x)<0\) for \(x\in(0,x_{2})\) and \(g(x)>0\) for \(x\in(x_{2},+\infty)\).
Case 1.1. If \(r< r_{0}\), then from (2.10) we know that \(g(1)>0\). This leads to \(g(x)>0\) for \(x\in[1,+\infty)\). Therefore (2.2) leads to the conclusion that \(u(x)\) is strictly convex on \([1,+\infty)\).
Case 1.2. If \(r_{0}\leq r<0\), then (2.10) implies that \(g(1)\leq0\). This leads to \(g(x)\leq0\) for \(x\in(0,1]\). Therefore (2.2) leads to the conclusion that \(u(x)\) is strictly concave on \((0,1]\).
Case 2. If \(r>0\), then (2.5) and (2.3) imply that
$$ g_{1}(x)< 0 $$
(2.11)
and
$$ \lim_{x\to0^{+}}g(x)=0 $$
(2.12)
for \(x\in(0,+\infty)\).
It follows from (2.11), (2.4), and (2.12) that \(g(x)<0\). Therefore (2.2) leads to the conclusion that \(u(x)\) is strictly concave on \((0,+\infty)\). □
Lemma 2.2
The function \(h(x)=2x^{2}+\frac{xe^{-x^{2}}}{\int_{0}^{x}e^{-t^{2}}\,dt}\) is strictly increasing on \((0,+\infty)\).
Proof
Simple computations lead to
$$ h'(x)=\frac{h_{1}(x)}{(\int_{0}^{x}e^{-t^{2}}\,dt)^{2}}, $$
(2.13)
where
$$\begin{aligned}& h_{1}(x)=4x \biggl( \int_{0}^{x}e^{-t^{2}}\,dt \biggr)^{2}+\bigl(1-2x^{2}\bigr)e^{-x^{2}} \int_{0}^{x}e^{-t^{2}}\,dt-xe^{-2x^{2}}, \\& \lim_{x\to0^{+}}h_{1}(x)=0, \end{aligned}$$
(2.14)
and
$$ h_{1}'(x)=4 \biggl( \int_{0}^{x}e^{-t^{2}}\,dt \biggr)^{2}+\bigl(4x^{3}+2x\bigr)e^{-x^{2}} \int_{0}^{x}e^{-t^{2}}\,dt+2x^{2}e^{-2x^{2}}>0 $$
(2.15)
for \(x\in(0,+\infty)\).
Hence, \(h(x)\) is strictly increasing on \((0,+\infty)\), as follows from (2.15), (2.14), and (2.13). □

3 Main results

Theorem 3.1
Let \(\lambda\in(0,1)\) and \(r_{0}=-1-\frac {2}{e\sqrt{\pi}\operatorname{erf}(1)}=-1.4926\ldots\) . Then the double inequality
$$ \operatorname{erf}\bigl(M_{p}(x,y;\lambda)\bigr)\leq G \bigl(\operatorname{erf}(x),\operatorname{erf}(y);\lambda\bigr)\leq \operatorname{erf}\bigl(M_{q}(x,y;\lambda)\bigr) $$
(3.1)
holds for all \(x,y\geq1\) if and only if \(p=-\infty\) and \(q\geq r_{0}\).
Proof
First of all, we prove that inequality (3.1) holds if \(p=-\infty\) and \(q\geq r_{0}\). It follows from (1.1) that the first inequality in (3.1) is true if \(p=-\infty\). Since the weighted power mean \(M_{t}(x,y;\lambda)\) is strictly increasing with respect to t on R, thus we only need to prove that the second inequality in (3.1) is true if \(r_{0}\leq q<0\).
If \(r_{0}\leq q<0\), \(u(z)=\log\operatorname{erf}(z^{1/q})\), then Lemma 2.1(2) leads to
$$ \lambda u(s)+(1-\lambda)u(t)\leq u\bigl(\lambda s+(1-\lambda)t \bigr) $$
(3.2)
for \(\lambda\in(0,1)\) and \(s,t\in(0,1]\).
Let \(s=x^{q}\), \(t=y^{q}\), and \(x,y\geq1\). Then (3.2) leads to the second inequality in (3.1).
Second, we prove that the second inequality in (3.1) implies \(q\geq r_{0}\).
Let \(x\geq1\) and \(y\geq1\). Then the second inequality in (3.1) leads to
$$ D(x,y)=:\operatorname{erf}\bigl(M_{q}(x,y;\lambda) \bigr)-G\bigl(\operatorname {erf}(x),\operatorname{erf}(y);\lambda\bigr)\geq0. $$
(3.3)
It follows from (3.3) that
$$D(y,y)=\frac{\partial}{\partial x}D(x,y)|_{x=y}=0 $$
and
$$ \frac{\partial^{2}}{\partial x^{2}}D(x,y)|_{x=y}=\frac{\lambda(1-\lambda)y}{\operatorname {erf}'(y)} \biggl[q-1+ \biggl(2y^{2}+\frac{ye^{-y^{2}}}{\int ^{y}_{0}e^{-t^{2}}\,dt} \biggr) \biggr]. $$
(3.4)
Therefore,
$$q\geq\lim_{y\to 1^{+}}\biggl(1-2y^{2}-\frac{ye^{-y^{2}}}{\int^{y}_{0}e^{-t^{2}}\,dt} \biggr)=r_{0} $$
follows from (3.3) and (3.4) together with Lemma 2.2.
Finally, we prove that the first inequality in (3.1) implies \(p=-\infty\). We distinguish two cases.
Case I. \(p\geq0\). Then for any fixed \(y\in[1,+\infty)\) we have
$$\lim_{x\to+\infty}\operatorname{erf}\bigl(M_{p}(x,y; \lambda)\bigr)=1 $$
and
$$\lim_{x\to+\infty}G\bigl(\operatorname{erf}(x),\operatorname {erf}(y); \lambda\bigr)=\operatorname{erf}^{1-\lambda}(y)< 1, $$
which contradicts the first inequality in (3.1).
Case II. \(-\infty< p<0\). Let \(x\geq1\), \(\alpha=\lambda ^{1/p}\) and \(y\to +\infty\). Then the first inequality in (3.1) leads to
$$ E(x)=:\operatorname{erf}^{\lambda}(x)-\operatorname{erf}( \alpha x)\geq0. $$
(3.5)
It follows from (3.5) that
$$ \lim_{x\to+\infty}E(x)=0 $$
(3.6)
and
$$ E'(x)=\frac{2\lambda}{\sqrt{\pi}}e^{-x^{2}} \biggl[ \operatorname {erf}^{\lambda-1}(x)-\frac{\alpha}{\lambda}e^{(1-\alpha ^{2})x^{2}} \biggr]. $$
(3.7)
Note that \(\alpha>1\), then
$$ \lim_{x\to +\infty} \biggl[\operatorname{erf}^{\lambda-1}(x)- \frac{\alpha }{\lambda}e^{(1-\alpha^{2})x^{2}} \biggr]=1. $$
(3.8)
It follows from (3.7) and (3.8) that there exists a sufficiently large \(\eta_{1}\in[1,+\infty)\), such that \(E'(x)>0\) for \(x\in(\eta_{1},+\infty)\). Hence \(E(x)\) is strictly increasing on \([\eta_{1},+\infty)\).
From the monotonicity of \(E(x)\) on \([\eta_{1},+\infty)\) and (3.6) we conclude that there exists \(\eta_{2}\in[1,+\infty)\), such that \(E(x)<0\) for \(x\in(\eta_{2},+\infty)\), this contradicts (3.5). □
Theorem 3.2
Let \(\lambda\in(0,1)\), then the double inequality
$$ \operatorname{erf}\bigl(M_{\mu}(x,y;\lambda)\bigr)\leq G \bigl(\operatorname{erf}(x),\operatorname{erf}(y);\lambda\bigr)\leq \operatorname{erf}\bigl(M_{\nu}(x,y;\lambda)\bigr) $$
(3.9)
holds for all \(0< x,y<1\) if and only if \(\mu\leq r_{0}\) and \(\nu\geq 0\).
Proof
First of all, we prove that (3.9) holds if \(\mu\leq r_{0}\) and \(\nu\geq0\).
If \(\mu\leq r_{0}\), \(u(z)=\log\operatorname{erf}(z^{1/\mu})\), then Lemma 2.1(1) leads to
$$ u\bigl(\lambda s+(1-\lambda)t\bigr)\leq\lambda u(s)+(1- \lambda)u(t) $$
(3.10)
for \(\lambda\in(0,1)\), \(s,t>1\).
Let \(s=x^{\mu}\), \(t=y^{\mu}\), and \(0< x,y<1\). Then (3.10) leads to the first inequality in (3.9).
If \(\nu\geq0\), \(u(z)=\log\operatorname{erf}(z^{1/\nu})\), then Lemma 2.1(3) leads to
$$ \lambda u(s)+(1-\lambda)u(t)\leq u\bigl(\lambda s+(1-\lambda)t \bigr) $$
(3.11)
for \(\lambda\in(0,1)\), \(0< s,t<1\).
Therefore, the second inequality in (3.9) follows from \(s=x^{\nu}\), \(t=y^{\nu}\), and \(0< x,y<1\) together with (3.11).
Second, we prove that the second inequality in (3.9) implies \(\nu\geq0\).
Let \(0< x,y<1\). Then the second inequality in (3.9) leads to
$$ J(x,y)=:\operatorname{erf}\bigl(M_{\nu}(x,y;\lambda) \bigr)-G\bigl(\operatorname {erf}(x),\operatorname{erf}(y);\lambda\bigr)\geq 0. $$
(3.12)
It follows from (3.12) that
$$J(y,y)=\frac{\partial}{\partial x}J(x,y)|_{x=y}=0 $$
and
$$ \frac{\partial^{2}}{\partial x^{2}}J(x,y)|_{x=y}=\frac{\lambda(1-\lambda)y}{\operatorname {erf}'(y)} \biggl[\nu-1+ \biggl(2y^{2}+\frac{ye^{-y^{2}}}{\int _{0}^{y}e^{-t^{2}}\,dt} \biggr) \biggr]. $$
(3.13)
Hence, from (3.12) and (3.13) together with Lemma 2.2 we know that
$$\nu\geq\lim_{y\to0^{+}} \biggl[1- \biggl(2y^{2}+ \frac{ye^{-y^{2}}}{\int _{0}^{y}e^{-t^{2}}\,dt} \biggr) \biggr]=0. $$
Finally, we prove that the first inequality in (3.9) implies \(\mu\leq r_{0}\).
Let \(y\to1\). Then the first inequality in (3.9) leads to
$$ L(x)=:G\bigl(\operatorname{erf}(x),\operatorname{erf}(1);\lambda \bigr)-\operatorname{erf}\bigl(M_{\mu}(x,1;\lambda)\bigr)\geq 0 $$
(3.14)
for \(0< x<1\).
It follows from (3.14) that
$$ L(1)=0 $$
(3.15)
and
$$ L'(x)=\frac{2\lambda e^{-x^{2}}}{\sqrt{\pi}} \bigl[\operatorname{erf}^{1-\lambda }(1) \operatorname{erf}^{\lambda-1}(x)-x^{\mu-1}\bigl(\lambda x^{\mu}+1-\lambda\bigr)^{1/\mu-1}e^{x^{2}-(\lambda x^{\mu}+1-\lambda)^{2/\mu}} \bigr]. $$
(3.16)
Let
$$ L_{1}(x)=\log \bigl[\operatorname{erf}^{1-\lambda}(1) \operatorname {erf}^{\lambda-1}(x) \bigr]-\log \bigl[x^{\mu-1}\bigl( \lambda x^{\mu}+1-\lambda\bigr)^{1/\mu-1}e^{x^{2}-(\lambda x^{\mu}+1-\lambda)^{2/\mu}} \bigr]. $$
(3.17)
Then
$$\begin{aligned}& \lim_{x\to1^{-}}L_{1}(x)=0, \\& L'_{1}(x)=(\lambda-1)\frac{\operatorname{erf}'(x)}{\operatorname {erf}(x)}- \frac{(\mu-1)(1-\lambda)}{x(\lambda x^{\mu}+1-\lambda)}-2x+2\lambda x^{\mu-1}\bigl(\lambda x^{\mu}+1- \lambda\bigr)^{2/\mu-1}, \end{aligned}$$
(3.18)
and
$$ \lim_{x\to1^{-}}L_{1}'(x)=(1- \lambda) \biggl[-\mu-1-\frac{2}{e \sqrt{\pi}\operatorname{erf}(1)} \biggr]. $$
(3.19)
If \(\mu>r_{0}\), then from (3.19) we clearly see that there exists a small \(\delta_{1}>0\), such that \(L_{1}'(x)<0\) for \(x\in(1-\delta_{1},1)\). Therefore, \(L_{1}(x)\) is strictly decreasing on \([1-\delta_{1},1]\).
The monotonicity of \(L_{1}(x)\) on \([1-\delta_{1},1]\) and (3.18) imply that there exists \(\delta_{2}>0\), such that \(L_{1}(x)>0\) for \(x\in(1-\delta_{2},1)\).
Hence, (3.16) and (3.17) lead to \(L(x)\) being strictly increasing on \([1-\delta_{2},1]\). It follows from the monotonicity of \(L(x)\) and (3.15) that there exists \(\delta_{3}>0\), such that \(L(x)<0\) for \(x\in(1-\delta_{3},1)\), this contradicts (3.14). □

Acknowledgements

This research was supported by the Natural Science Foundation of China under Grants 61174076, 61374086, 11371125, and 11401191, and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004. The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Abramowitz, M, Stegun, I (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965) Abramowitz, M, Stegun, I (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)
2.
Zurück zum Zitat Oldham, K, Myland, J, Spanier, J: An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd edn. Springer, New York (2009) CrossRef Oldham, K, Myland, J, Spanier, J: An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd edn. Springer, New York (2009) CrossRef
3.
4.
Zurück zum Zitat Hart, RG: A close approximation related to the error function. Math. Comput. 20, 600-602 (1966) CrossRefMATH Hart, RG: A close approximation related to the error function. Math. Comput. 20, 600-602 (1966) CrossRefMATH
6.
Zurück zum Zitat Matta, F, Reichel, A: Uniform computation of the error function and other related functions. Math. Comput. 25, 339-344 (1971) CrossRefMathSciNetMATH Matta, F, Reichel, A: Uniform computation of the error function and other related functions. Math. Comput. 25, 339-344 (1971) CrossRefMathSciNetMATH
7.
Zurück zum Zitat Bajić, B: On the computation of the inverse of the error function by means of the power expansion. Bull. Math. Soc. Sci. Math. Roum. 17(65), 115-121 (1973) Bajić, B: On the computation of the inverse of the error function by means of the power expansion. Bull. Math. Soc. Sci. Math. Roum. 17(65), 115-121 (1973)
8.
Zurück zum Zitat Blair, JM, Edwards, CA, Johnson, JH: Rational Chebyshev approximations for the inverse of the error function. Math. Comput. 30(136), loose microfiche suppl., 7-68 (1976) CrossRefMathSciNet Blair, JM, Edwards, CA, Johnson, JH: Rational Chebyshev approximations for the inverse of the error function. Math. Comput. 30(136), loose microfiche suppl., 7-68 (1976) CrossRefMathSciNet
10.
Zurück zum Zitat Zimmerman, IH: Extending Menzel’s closed-form approximation for the error function. Am. J. Phys. 44(6), 592-593 (1976) CrossRefMathSciNet Zimmerman, IH: Extending Menzel’s closed-form approximation for the error function. Am. J. Phys. 44(6), 592-593 (1976) CrossRefMathSciNet
11.
Zurück zum Zitat Elbert, Á, Laforgia, A: An inequality for the product of two integrals relating to the incomplete gamma function. J. Inequal. Appl. 5, 39-51 (2000) MathSciNetMATH Elbert, Á, Laforgia, A: An inequality for the product of two integrals relating to the incomplete gamma function. J. Inequal. Appl. 5, 39-51 (2000) MathSciNetMATH
12.
Zurück zum Zitat Gawronski, W, Müller, J, Reinhard, M: Reduced cancellation in the evaluation of entire functions and applications to the error function. SIAM J. Numer. Anal. 45(6), 2564-2576 (2007) CrossRefMathSciNetMATH Gawronski, W, Müller, J, Reinhard, M: Reduced cancellation in the evaluation of entire functions and applications to the error function. SIAM J. Numer. Anal. 45(6), 2564-2576 (2007) CrossRefMathSciNetMATH
13.
16.
Zurück zum Zitat Temme, NM: Error functions, Dawson’s and Fresnel integrals. In: NIST Handbook of Mathematical Functions, pp. 159-171. U.S. Dept. Commerce, Washington (2010) Temme, NM: Error functions, Dawson’s and Fresnel integrals. In: NIST Handbook of Mathematical Functions, pp. 159-171. U.S. Dept. Commerce, Washington (2010)
17.
Zurück zum Zitat Kharin, SN: A generalization of the error function and its application in heat conduction problems. In: Differential Equations and Their Applications, vol. 176, pp. 51-59 (1981) (in Russian) Kharin, SN: A generalization of the error function and its application in heat conduction problems. In: Differential Equations and Their Applications, vol. 176, pp. 51-59 (1981) (in Russian)
18.
Zurück zum Zitat Chaudhry, MA, Qadir, A, Zubair, SM: Generalized error functions with applications to probability and heat conduction. Int. J. Appl. Math. 9(3), 259-278 (2002) MathSciNetMATH Chaudhry, MA, Qadir, A, Zubair, SM: Generalized error functions with applications to probability and heat conduction. Int. J. Appl. Math. 9(3), 259-278 (2002) MathSciNetMATH
19.
Zurück zum Zitat Aumann, G: Konvexe Funktionen und die Induktion bei Ungleichungen zwischen Mittelwerten. Münchner Sitzungsber. 109, 403-415 (1933) Aumann, G: Konvexe Funktionen und die Induktion bei Ungleichungen zwischen Mittelwerten. Münchner Sitzungsber. 109, 403-415 (1933)
20.
Zurück zum Zitat Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Generalized convexity and inequalities. J. Math. Anal. Appl. 335(2), 1294-1308 (2007) CrossRefMathSciNetMATH Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Generalized convexity and inequalities. J. Math. Anal. Appl. 335(2), 1294-1308 (2007) CrossRefMathSciNetMATH
21.
Zurück zum Zitat Gronau, D: Selected topics on functional equations. In: Functional Analysis, IV (Dubrovnik, 1993). Various Publ. Ser. (Aarhus), vol. 43, pp. 63-84. Aarhus Univ., Aarhus (1994) Gronau, D: Selected topics on functional equations. In: Functional Analysis, IV (Dubrovnik, 1993). Various Publ. Ser. (Aarhus), vol. 43, pp. 63-84. Aarhus Univ., Aarhus (1994)
22.
Zurück zum Zitat Gronau, D, Matkowski, J: Geometrical convexity and generalization of the Bohr-Mollerup theorem on the gamma function. Math. Pannon. 4, 153-160 (1993) MathSciNetMATH Gronau, D, Matkowski, J: Geometrical convexity and generalization of the Bohr-Mollerup theorem on the gamma function. Math. Pannon. 4, 153-160 (1993) MathSciNetMATH
23.
Zurück zum Zitat Gronau, D, Matkowski, J: Geometrically convex solutions of certain difference equations and generalized Bohr-Mollerup type theorems. Results Math. 26, 290-297 (1994) CrossRefMathSciNetMATH Gronau, D, Matkowski, J: Geometrically convex solutions of certain difference equations and generalized Bohr-Mollerup type theorems. Results Math. 26, 290-297 (1994) CrossRefMathSciNetMATH
24.
Zurück zum Zitat Matkowski, J: \(\mathbf{L}^{p}\)-Like paranorms. In: Selected Topics in Functional Equations and Iteration Theory. Proceedings of the Austrian-Polish Seminar (Graz, 1991). Grazer Math. Ber., vol. 316, pp. 103-138. Karl-Franzens-Univ. Graz, Graz (1992) Matkowski, J: \(\mathbf{L}^{p}\)-Like paranorms. In: Selected Topics in Functional Equations and Iteration Theory. Proceedings of the Austrian-Polish Seminar (Graz, 1991). Grazer Math. Ber., vol. 316, pp. 103-138. Karl-Franzens-Univ. Graz, Graz (1992)
25.
Zurück zum Zitat Niculescu, CP: Convexity according to the geometric mean. Math. Inequal. Appl. 3, 155-167 (2000) MathSciNetMATH Niculescu, CP: Convexity according to the geometric mean. Math. Inequal. Appl. 3, 155-167 (2000) MathSciNetMATH
27.
Zurück zum Zitat Xia, W, Chu, Y: Optimal inequalities for the convex combination of error function. J. Math. Inequal. 9(1), 85-99 (2015) CrossRefMathSciNet Xia, W, Chu, Y: Optimal inequalities for the convex combination of error function. J. Math. Inequal. 9(1), 85-99 (2015) CrossRefMathSciNet
28.
Zurück zum Zitat Chu, Y, Li, Y, Xia, W, Zhang, X: Best possible inequalities for the harmonic mean of error function. J. Inequal. Appl. 2014, 525 (2014) CrossRefMathSciNet Chu, Y, Li, Y, Xia, W, Zhang, X: Best possible inequalities for the harmonic mean of error function. J. Inequal. Appl. 2014, 525 (2014) CrossRefMathSciNet
Metadaten
Titel
Optimal lower and upper bounds for the geometric convex combination of the error function
verfasst von
Yong-Min Li
Wei-Feng Xia
Yu-Ming Chu
Xiao-Hui Zhang
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0906-y

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe