Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

Generalized Wilker-type inequalities with two parameters

verfasst von: Hong-Hu Chu, Zhen-Hang Yang, Yu-Ming Chu, Wen Zhang

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In the article, we present certain \(p, q\in\mathbb{R}\) such that the Wilker-type inequalities
$$\begin{aligned}& \frac{2q}{p+2q} \biggl(\frac{\sin x}{x} \biggr)^{p}+ \frac{p}{p+2q} \biggl(\frac{\tan x}{x} \biggr)^{q}>(< )1\quad \mbox{and}\\& \biggl(\frac{\pi}{2} \biggr)^{p} \biggl(\frac{\sin x}{x} \biggr)^{p}+ \biggl[1- \biggl(\frac{\pi}{2} \biggr)^{p} \biggr] \biggl(\frac{\tan x}{x} \biggr)^{q}>(< )1 \end{aligned}$$
hold for all \(x\in(0, \pi/2)\).
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

The well-known Wilker inequality \((\sin x/x)^{2}+\tan x/x>2\) for all \(x\in(0, \pi/2)\) was proposed by Wilker [1] and proved by Sumner et al. [2].
Recently, the Wilker inequality has attracted the attention of many researchers. Many generalizations, improvements, and refinements of the Wilker inequality can be found in the literature [310].
Pinelis [11] and Sun and Zhu [12] proved that the inequalities
$$ \biggl(\frac{\sin x}{x} \biggr)^{2}+\frac{\tan x}{x}-2>\lambda x^{3}\tan x\quad \mbox{and}\quad \biggl(\frac{y}{\sinh y} \biggr)^{2} + \frac{y}{\tanh y}-2< \mu y^{3}\sinh y $$
hold for all \(x\in(0, \pi/2)\) and \(y>0\) if and only if \(\lambda\leq 8/45\) and \(\mu\geq2/45\).
Wu and Srivastava [13] provided polynomials \(P_{1}(x)\) and \(P_{2}(x)\) of degree \(2n+3\) \((n\in\mathbb{N})\) with explicit expressions and coefficients concerning Bernoulli numbers such that the double inequality
$$ P_{1}(x)\tan x< \biggl(\frac{\sin x}{x} \biggr)^{2}+ \frac{\tan x}{x}-2< P_{2}(x)\tan x $$
holds for all \(x\in(0, \pi/2)\).
Yang [14] proved that \(p=5/3\) and \(q=\log2/[2(\log\pi-\log2)]\) are the best possible parameters such that the double inequality
$$ \biggl(\frac{\sqrt{\cos^{2p}x+8}+\cos^{p}x}{4} \biggr)^{1/p}< \frac{\sin x}{x}< \biggl( \frac{\sqrt{\cos^{2q}x+8}+\cos^{q}x}{4} \biggr)^{1/q} $$
holds for all \(x\in(0, \pi/2)\).
Very recently, Yang and Chu [15] proved that the Wilker-type inequality
$$ \frac{2}{k+2} \biggl(\frac{\sin x}{x} \biggr)^{kp}+ \frac{k}{k+2} \biggl(\frac{\tan x}{x} \biggr)^{p}>(< )1 $$
holds for any fixed \(k\geq1\) and all \(x\in(0, \pi/2)\) if and only if \(p>0\) or \(p\leq[\log2-\log(k+2)]/[k(\log\pi-\log2)]\) (\(-12/[5(k+2)]\leq p<0\)), and the hyperbolic version of Wilker-type inequality
$$ \frac{2}{k+2} \biggl(\frac{\sinh x}{x} \biggr)^{kp}+ \frac{k}{k+2} \biggl(\frac{\tanh x}{x} \biggr)^{p}>(< )1 $$
holds for any fixed \(k\geq1\) (\({<}-2\)) and all \(x\in(0, \infty)\) if and only if \(p>0\) or \(p\leq-12/[5(k+2)]\) (\(p<0\) or \(p\geq -12/[5(k+2)]\)).
More results of the Wilker-type inequalities for hyperbolic, Bessel, circular, inverse trigonometric, inverse hyperbolic, lemniscate, generalized trigonometric, generalized hyperbolic, Jacobian elliptic and theta, and hyperbolic Fibonacci functions can be found in the literature [1628].
The main purpose of the article is to establish the Wilker-type inequalities
$$ \frac{2q}{p+2q} \biggl(\frac{\sin x}{x} \biggr)^{p}+ \frac{p}{p+2q} \biggl(\frac{\sin x}{x} \biggr)^{q}>(< )1 $$
and
$$ \biggl(\frac{\pi}{2} \biggr)^{p} \biggl(\frac{\sin x}{x} \biggr)^{p}+ \biggl[1- \biggl(\frac{\pi}{2} \biggr)^{p} \biggr] \biggl(\frac{\tan x}{x} \biggr)^{q}>(< )1 $$
for all \(x\in(0, \pi/2)\) and certain \(p, q\in\mathbb{R}\). Some complicated analytical computations are carried out using the computer algebra system Mathematica.

2 Lemmas

In order to prove our main results, we need several lemmas.
Lemma 2.1
(See [29, 30])
Let \(-\infty< a< b<\infty\), \(f, g: [a, b]\rightarrow\mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a, b)\), and \(g^{\prime}(x)\neq0\) on \((a, b)\). Then both of the functions
$$ \frac{f(x)-f(a)}{g(x)-g(a)} \quad\textit{and} \quad\frac{f(x)-f(b)}{g(x)-g(b)} $$
are increasing (decreasing) on \((a, b)\) if \(f^{\prime}(x)/g^{\prime}(x)\) is increasing (decreasing) on \((a, b)\). If \(f^{\prime}(x)/g^{\prime}(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.
Lemma 2.2
(See [31])
Let \(A(t)=\sum_{k=0}^{\infty }a_{k}t^{k}\) and \(B(t)=\sum_{k=0}^{\infty}b_{k}t^{k}\) be two real power series converging on \((-r,r)\) (\(r>0\)) with \(b_{k}>0\) for all k. If the nonconstant sequence \(\{a_{k}/b_{k}\}\) is increasing (decreasing) for all k, then the function \(t\mapsto A(t)/B(t)\) is strictly increasing (decreasing) on \((0,r)\).
Lemma 2.3
(See [32])
Let \(n\in\mathbb{N}\), and \(B_{n}\) be the Bernoulli numbers. Then the power series formulas
$$\begin{aligned}& \frac{1}{\sin x}=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{2^{2n}-2}{(2n)!}|B_{2n}|x^{2n-1},\qquad \cot x=\frac{1}{x}- \sum_{n=1}^{\infty}\frac{2^{2n}}{(2n)!}|B_{2n}|x^{2n-1},\\& \frac{1}{\sin^{2} x}=\frac{1}{x^{2}}+\sum_{n=1}^{\infty} \frac {(2n-1)2^{2n}}{(2n)!}|B_{2n}|x^{2n-2}, \\& \frac{\cos x}{\sin^{3} x}= \frac{1}{x^{3}}-\sum_{n=1}^{\infty} \frac {n(2n+1)2^{2n+2}}{(2n+2)!}|B_{2n+2}|x^{2n-1} \end{aligned}$$
hold for \(x\in(-\pi, \pi)\), and the power series formulas
$$ \tan x=\sum_{n=1}^{\infty}\frac{ (2^{2n}-1 )2^{2n}}{(2n)!}|B_{2n}|x^{2n-1},\qquad \frac{1}{\cos^{2} x}=\sum_{n=1}^{\infty} \frac{(2n-1) (2^{2n}-1 )2^{2n}}{(2n)!}|B_{2n}|x^{2n-2} $$
hold for \(x\in(-\pi/2, \pi/2)\).
Lemma 2.4
(See [33])
Let \(B_{n}\) be the Bernoulli numbers. Then the double inequality
$$ \frac{2(2n)!}{(2\pi)^{2n}}< |B_{2n}|< \frac{2^{2n-1}}{2^{2n-1}-1}\frac {2(2n)!}{(2\pi)^{2n}} $$
holds for all \(n\in\mathbb{N}\).
From Lemma 2.4 we immediately get the following:
Remark 2.1
Let \(B_{n}\) be the Bernoulli numbers. Then the double inequality
$$ \frac{2^{2n-1}-1}{2^{2n-1}}\frac{(2\pi)^{2}}{2n(2n-1)}< \frac {|B_{2n-2}|}{|B_{2n}|}< \frac{2^{2n-3}}{2^{2n-3}-1} \frac{(2\pi)^{2}}{2n(2n-1)} $$
holds for all \(n\in\mathbb{N}\) and \(n\geq1\).
Lemma 2.5
Let \(n\in\mathbb{N}\), \(B_{n}\) be the Bernoulli numbers, and \(a_{n}\) and \(b_{n}\) be respectively defined by
$$\begin{aligned}& a_{n}=2^{2n}-2n^{2}-3n-2, \end{aligned}$$
(2.1)
$$\begin{aligned}& b_{n}=(2n-3)2^{2n}+2n^{2}+n+4-n(2n-1) \bigl(2^{2n-3}-1 \bigr)\frac {|B_{2n-2}|}{|B_{2n}|}. \end{aligned}$$
(2.2)
Then the sequence \(\{b_{n}/a_{n}\}\) is strictly increasing for \(n\geq3\).
Proof
Let \(n\geq3\) and
$$ u_{n}=\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}. $$
(2.3)
Then from (2.1)-(2.3) and Remark 2.1 we get
$$\begin{aligned} u_{n}={}&\frac{(2n-1)2^{2n+2}+2n^{2}+5n+7}{2^{2n+2}-2n^{2}-7n-7}-\frac {(n+1)(2n+1) (2^{2n-1}-1 )}{ 2^{2n+2}-2n^{2}-7n-7}\frac{|B_{2n}|}{|B_{2n+2}|} \\ &{}-\frac{(2n-3)2^{2n}+2n^{2}+n+4}{2^{2n}-2n^{2}-3n-2}+\frac{n(2n-1) (2^{2n-3}-1 )}{ 2^{2n}-2n^{2}-3n-2}\frac{|B_{2n-2}|}{|B_{2n}|} \\ >{}&\frac{2}{a_{n}a_{n+1}} \bigl[4\times 2^{4n}-\bigl(6n^{3}+7n^{2}+5n+11 \bigr)2^{2n}-\bigl(2n^{2}-2n-7\bigr) \bigr] \\ &{}+\frac{\pi^{2}}{2^{2n+2}}\frac {(6n^{2}+5n-39)2^{4n}+(20n^{2}+70n+134)2^{2n}-(32n^{2}+112n+112)}{a_{n}a_{n+1}}. \end{aligned}$$
(2.4)
Let
$$ u_{n}^{\ast}=4\times 2^{4n}-\bigl(6n^{3}+7n^{2}+5n+11 \bigr)2^{2n}-\bigl(2n^{2}-2n-7\bigr). $$
(2.5)
Then we clearly see that
$$\begin{aligned}& u_{3}^{\ast}=315>0, \end{aligned}$$
(2.6)
$$\begin{aligned}& u_{n+1}^{\ast}-16u_{n}^{\ast }= \bigl(18n^{3}+3n^{2}-17n+15\bigr)2^{2n+2}+ \bigl(30n^{2}-34n-105\bigr)>0 \end{aligned}$$
(2.7)
for \(n\geq3\).
It follows from (2.6) and (2.7) that
$$ u_{n}^{\ast}>0 $$
(2.8)
for all \(n\geq3\).
It is not difficult to verify that
$$ a_{n}>0 $$
(2.9)
and
$$ \bigl(6n^{2}+5n-39\bigr)2^{4n}+\bigl(20n^{2}+70n+134 \bigr)2^{2n}-\bigl(32n^{2}+112n+112\bigr)>0 $$
(2.10)
for all \(n\geq3\).
Therefore, Lemma 2.5 follows easily from (2.3)-(2.5) and (2.8)-(2.10). □
Lemma 2.6
Let \(n\in\mathbb{N}\), \(B_{n}\) be the Bernoulli numbers, \(u_{n}\) be defined by (2.3), and \(c_{n}\) and \(v_{n}\) be respectively defined by
$$\begin{aligned}& c_{n}=2n\bigl(2^{2n}-1\bigr)-2n(2n-1) \bigl(2^{2n-3}-1 \bigr)\frac{|B_{2n-2}|}{|B_{2n}|}, \end{aligned}$$
(2.11)
$$\begin{aligned}& v_{n}=\frac{c_{n+1}}{a_{n+1}}-\frac{c_{n}}{a_{n}}. \end{aligned}$$
(2.12)
Then \(v_{n}>u_{n}\) for all \(n\geq3\).
Proof
It follows from (2.1)-(2.3), (2.11), and (2.12) that
$$\begin{aligned} v_{n}-u_{n}={}&{-}\frac{2[(6n^{2}+5n-2)2^{2n}+4n+5]}{a_{n}a_{n+1}}+\frac {n(2n-1)(2^{2n-3}-1)}{2^{2n}-2n^{2}-3n-2} \frac {|B_{2n-2}|}{|B_{2n}|} \\ &{}-\frac{(n+1)(2n+1)(2^{2n-1}-1)}{2^{2n+2}-2n^{2}-7n-7}\frac {|B_{2n}|}{|B_{2n+2}|}. \end{aligned}$$
(2.13)
From (2.13), Remark 2.1, and the inequality \(\pi^{2}>9\) we get
$$\begin{aligned}& v_{3}-u_{3}=\frac{8}{105},\qquad v_{4}-u_{4}= \frac{104}{3{,}045}, \qquad v_{5}-u_{5}=\frac{15{,}496}{1{,}102{,}145}, \end{aligned}$$
(2.14)
$$\begin{aligned}& v_{6}-u_{6}=\frac{23{,}139{,}208}{4{,}326{,}527{,}205},\qquad v_{7}-u_{7}= \frac{2{,}511{,}041{,}224}{1{,}319{,}700{,}084{,}885}, \end{aligned}$$
(2.15)
$$\begin{aligned}& v_{n}-u_{n} \\& \quad>-\frac{2[(6n^{2}+5n-2)2^{2n}+4n+5]}{a_{n}a_{n+1}} \\& \qquad{}+\frac{n(2n-1)(2^{2n-3}-1)}{2^{2n}-2n^{2}-3n-2}\frac {2^{2n-1}-1}{2^{2n-1}}\frac{(2\pi)^{2}}{2n(2n-1)} \\& \qquad{}-\frac{(n+1)(2n+1)(2^{2n-1}-1)}{2^{2n+2}-2n^{2}-7n-7}\frac {2^{2n-1}}{2^{2n-1}-1}\frac{(2\pi)^{2}}{(2n+1)(2n+2)} \\& \quad=-\frac{2[(6n^{2}+5n-2)2^{2n}+4n+5]}{a_{n}a_{n+1}} \\& \qquad{}+\frac{\pi^{2}}{2^{2n+2}}\frac {(6n^{2}+5n-39)2^{4n}+(20n^{2}+70n+134)2^{2n}-(32n^{2}+112n+112)}{a_{n}a_{n+1}} \\& \quad>-\frac{2[(6n^{2}+5n-2)2^{2n}+4n+5]}{a_{n}a_{n+1}} \\& \qquad{}+\frac{81}{2^{2n+2}}\frac {(6n^{2}+5n-39)2^{4n}+(20n^{2}+70n+134)2^{2n}-(32n^{2}+112n+112)}{a_{n}a_{n+1}} \\& \quad=\frac {(6n^{2}+5n-335)2^{4n}+(180n^{2}+598n+1{,}166)2^{2n}-9(32n^{2}+112n+112)}{a_{n}a_{n+1}2^{2n+2}}. \end{aligned}$$
(2.16)
Note that
$$ a_{n}>0,\quad \bigl(180n^{2}+598n+1{,}166\bigr)2^{2n}-9 \bigl(32n^{2}+112n+112\bigr)>0, $$
(2.17)
and
$$ 6n^{2}+5n-335\geq6\times8^{2}+5\times8-335=89 $$
(2.18)
for all \(n\geq8\).
Therefore, Lemma 2.6 follows easily from (2.14)-(2.18). □
Lemma 2.7
Let \(n\in\mathbb{N}\), and \(w_{n}\) be defined by
$$\begin{aligned} w_{n}={}&32\times 2^{6n}- \bigl(48n^{3}+206n^{2}+165n+2{,}183 \bigr)2^{4n}\\ &{}+ \bigl(3{,}284n^{2}+5{,}526n+4{,}716 \bigr)2^{2n}- \bigl(1{,}320n^{2}+1{,}980n+1{,}320 \bigr). \end{aligned}$$
Then \(w_{n}>0\) for all \(n\geq5\).
Proof
Let
$$ w_{n}^{\ast}=32\times4^{n}- \bigl(48n^{3}+206n^{2}+165n+2{,}183 \bigr). $$
Then we clearly see that
$$\begin{aligned}& w_{n}=2^{4n}w_{n}^{\ast}+ \bigl(3{,}284n^{2}+5{,}526n+4{,}716 \bigr)2^{2n}- \bigl(1{,}320n^{2}+1{,}980n+1{,}320 \bigr), \end{aligned}$$
(2.19)
$$\begin{aligned}& w_{5}^{\ast}=18{,}160>0, \end{aligned}$$
(2.20)
$$\begin{aligned}& w_{n+1}^{\ast}-4w_{n}^{\ast}=144n^{3}+474n^{2}-61n+6{,}130>0 \end{aligned}$$
(2.21)
for all \(n\geq5\).
Inequalities (2.20) and (2.21) lead to the conclusion that
$$ w_{n}^{\ast}>0 $$
(2.22)
for all \(n\geq5\).
Note that
$$ \bigl(3{,}284n^{2}+5{,}526n+4{,}716 \bigr)2^{2n}- \bigl(1{,}320n^{2}+1{,}980n+1{,}320 \bigr)>0 $$
(2.23)
for all \(n\geq5\).
Therefore, Lemma 2.7 follows from (2.19), (2.22), and (2.23). □
Lemma 2.8
Let \(n\in\mathbb{N}\), and \(u_{n}\) and \(v_{n}\) be defined by (2.3) and (2.12), respectively. Then \(v_{3}=37u_{3}/35\) and \(v_{n}<37u_{n}/35\) for all \(n\geq4\).
Proof
It follows from (2.1)-(2.3), (2.11), and (2.12) that
$$\begin{aligned} &35v_{n}-37u_{n} \\ &\quad=-\frac{2 [8\times 2^{4n}- (12n^{3}-196n^{2}-165n+92 )2^{2n}- (4n^{2}-144n-189 ) ]}{ (2^{2n}-2n^{2}-3n-2 ) (2^{2n+2}-2n^{2}-7n-7 )} \\ &\qquad{}-\frac{33(2n+1)(n+1) (2^{2n-1}-1 )}{2^{2n+2}-2n^{2}-7n-7}\frac {|B_{2n}|}{|B_{2n+2}|} +\frac{33n(2n-1) (2^{2n-3}-1 )}{2^{2n}-2n^{2}-3n-2}\frac {|B_{2n-2}|}{|B_{2n}|}. \end{aligned}$$
(2.24)
From Remark 2.1, (2.24), and the inequality \(\pi^{2}<10\) we get
$$\begin{aligned}& 35v_{3}-37u_{3}=0,\qquad 35v_{4}-37u_{4}=- \frac{288}{145}, \end{aligned}$$
(2.25)
$$\begin{aligned}& 35v_{n}-37u_{n} \\& \quad< -\frac{2 [8\times 2^{4n}- (12n^{3}-196n^{2}-165n+92 )2^{2n}- (4n^{2}-144n-189 ) ]}{ (2^{2n}-2n^{2}-3n-2 ) (2^{2n+2}-2n^{2}-7n-7 )} \\& \qquad{}-\frac{33(2n+1)(n+1) (2^{2n-1}-1 )}{2^{2n+2}-2n^{2}-7n-7}\frac {2^{2n+1}-1}{2^{2n+1}}\frac{(2\pi)^{2}}{(2n+1)(2n+2)} \\& \qquad{}+\frac{33n(2n-1) (2^{2n-3}-1 )}{2^{2n}-2n^{2}-3n-2}\frac {2^{2n-3}}{2^{2n-3}-1}\frac{(2\pi)^{2}}{2n(2n+1)} \\& \quad=-\frac{2 [8\times 2^{4n}- (12n^{3}-196n^{2}-165n+92 )2^{2n}- (4n^{2}-144n-189 ) ]}{ a_{n}a_{n+1}} \\& \qquad{}+\frac{33\pi^{2}}{4}\frac {(6n^{2}+5n+11)2^{4n}-2(10n^{2}+15n+12)2^{2n}+8n^{2}+12n+8}{a_{n}a_{n+1}2^{2n}} \\& \quad< -\frac{2 [8\times 2^{4n}- (12n^{3}-196n^{2}-165n+92 )2^{2n}- (4n^{2}-144n-189 ) ]}{ a_{n}a_{n+1}} \\& \qquad{}+\frac{33\times 10}{4}\frac {(6n^{2}+5n+11)2^{4n}-2(10n^{2}+15n+12)2^{2n}+8n^{2}+12n+8}{a_{n}a_{n+1}2^{2n}} \\& \quad=-\frac{w_{n}}{a_{n}a_{n+1}2^{2n+1}}, \end{aligned}$$
(2.26)
where \(w_{n}\) is given in Lemma 2.7.
Therefore, Lemma 2.8 follows easily from Lemma 2.7, (2.25), and (2.26). □
Let
$$\begin{aligned}& A(x)=(x-\sin x\cos x) (\sin x-x\cos x)^{2}\cos x, \end{aligned}$$
(2.27)
$$\begin{aligned}& B(x)=(\sin x-x\cos x) (x-\sin x\cos x)^{2}, \end{aligned}$$
(2.28)
$$\begin{aligned}& C(x)=x \bigl(x\sin x-2x^{2}\cos x+\sin^{2}x\cos x \bigr) \sin ^{2}x \\& \hphantom{C(x)}=x^{3}\sin^{2}x\cos x \biggl(\frac{\sin^{2}x}{x^{2}}+ \frac{\tan x}{x}-2 \biggr). \end{aligned}$$
(2.29)
Then from the Wilker inequality and Lemma 2.3 we clearly see that
$$ A(x)>0,\qquad B(x)>0, \qquad C(x)>0 $$
for all \(x\in(0, \pi/2)\) and
$$\begin{aligned}& \frac{A(x)}{\sin^{3}x\cos^{2}x}=\sum_{n=3}^{\infty} \frac {2^{2n}|B_{2n}|a_{n}}{(2n)!}x^{2n},\qquad \frac{B(x)}{\sin^{3}x\cos^{2}x}=\sum _{n=3}^{\infty}\frac {2^{2n}|B_{2n}|b_{n}}{(2n)!}x^{2n}, \end{aligned}$$
(2.30)
$$\begin{aligned}& \frac{C(x)}{\sin^{3}x\cos^{2}x}=\sum_{n=3}^{\infty} \frac {2^{2n}|B_{2n}|c_{n}}{(2n)!}x^{2n}, \end{aligned}$$
(2.31)
where \(a_{n}\), \(b_{n}\), and \(c_{n}\) are respectively given by (2.1), (2.2), and (2.11).
Lemma 2.9
Let \(q\in\mathbb{R}\), \(A(x)\), \(B(x)\), and \(C(x)\) be respectively given by (2.27)-(2.29), and \(f(x): (0, \pi/2)\rightarrow\mathbb{R}\) be defined as
$$ f(x)=\frac{q B(x)+C(x)}{A(x)}. $$
(2.32)
Then the following statements are true:
(1)
if \(q=-1\), then \(f(x)\) is strictly increasing from \((0, \pi/2)\) onto \((2q+12/5, 3-\pi^{2}/4)\);
 
(2)
if \(q>-1\), then \(f(x)\) is strictly increasing from \((0, \pi/2)\) onto \((2q+12/5, \infty)\);
 
(3)
if \(q\leq-37/35\), then \(f(x)\) is strictly decreasing from \((0, \pi/2)\) onto \((-\infty, 2q+12/5)\).
 
Proof
Let \(a_{n}\), \(b_{n}\), \(c_{n}\), \(u_{n}\), and \(v_{n}\) be respectively defined by (2.1)-(2.3), (2.11), and (2.12). Then from (2.30)-(2.32) and Lemma 2.5 we have
$$\begin{aligned}& f(x)=\frac{\sum_{n=3}^{\infty}(qb_{n}+c_{n})x^{2n}}{\sum_{n=3}^{\infty }a_{n}x^{2n}}, \end{aligned}$$
(2.33)
$$\begin{aligned}& \frac{qb_{n+1}+c_{n+1}}{a_{n+1}}-\frac{qb_{n}+c_{n}}{a_{n}}=qu_{n}+v_{n}, \end{aligned}$$
(2.34)
$$\begin{aligned}& u_{n}=\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}>0 \end{aligned}$$
(2.35)
for all \(n\geq3\).
Note that
$$\begin{aligned}& f\bigl(0^{+}\bigr)=\frac{qb_{3}+c_{3}}{a_{3}}=2q+\frac{12}{5}, \end{aligned}$$
(2.36)
$$\begin{aligned}& \lim_{x\rightarrow{\frac{\pi}{2}}^{-}}f(x)=\lim_{x\rightarrow {\frac{\pi}{2}}^{-}} \frac{C(x)-B(x)}{A(x)}=3-\frac{\pi^{2}}{4}\quad (q=-1), \end{aligned}$$
(2.37)
$$\begin{aligned}& \lim_{x\rightarrow{\frac{\pi}{2}}^{-}}f(x)=\lim_{x\rightarrow {\frac{\pi}{2}}^{-}} \frac{qB(x)+C(x)}{A(x)}=+\infty \quad(q>-1), \end{aligned}$$
(2.38)
$$\begin{aligned}& \lim_{x\rightarrow{\frac{\pi}{2}}^{-}}f(x)=\lim_{x\rightarrow {\frac{\pi}{2}}^{-}} \frac{qB(x)+C(x)}{A(x)}=-\infty\quad (q< -1). \end{aligned}$$
(2.39)
We divide the proof into two cases.
Case 1 \(q\geq-1\). Then it follows from (2.34) and (2.35), together with Lemma 2.6, that
$$ \frac{qb_{n+1}+c_{n+1}}{a_{n+1}}-\frac{qb_{n}+c_{n}}{a_{n}}\geq v_{n}-u_{n}>0 $$
(2.40)
for \(n\geq3\).
Therefore, parts (1) and (2) follow from (2.33), (2.36)-(2.38), (2.40), and Lemma 2.2.
Case 2 \(q\leq-37/35\). Then (2.34) and (2.35), together with Lemma 2.8, lead to
$$\begin{aligned}& \frac{qb_{4}+c_{4}}{a_{4}}-\frac{qb_{3}+c_{3}}{a_{3}}\leq v_{3}-\frac{37}{35}u_{3}=0, \end{aligned}$$
(2.41)
$$\begin{aligned}& \frac{qb_{n+1}+c_{n+1}}{a_{n+1}}-\frac{qb_{n}+c_{n}}{a_{n}}\leq v_{n}-\frac{37}{35}u_{n}< 0 \end{aligned}$$
(2.42)
for \(n\geq4\).
Therefore, part (3) follows from (2.33), (2.36), (2.39), (2.41), (2.42), and Lemma 2.2. □
Let \(p, q\in\mathbb{R}\), \(x\in(0, \pi/2)\), and the functions \(x\rightarrow S_{p}(x)\), \(x\rightarrow T_{q}(x)\), and \(x\rightarrow W_{p,q}(x)\) be respectively defined by
$$\begin{aligned}& S_{p}(x)=\frac{1- (\frac{\sin x}{x} )^{p}}{p}\quad (p\neq 0),\qquad S_{0}(x)=\lim _{p\rightarrow0}S_{p}(x)=\log\frac{x}{\sin x}, \end{aligned}$$
(2.43)
$$\begin{aligned}& T_{q}(x)=\frac{ (\frac{\tan x}{x} )^{q}-1}{q} \quad(q\neq 0),\qquad T_{0}(x)=\lim _{q\rightarrow0}T_{q}(x)=\log\frac{\tan x}{x}, \end{aligned}$$
(2.44)
and
$$ W_{p, q}(x)=\frac{S_{p}(x)}{T_{q}(x)}. $$
Then we clearly see that
$$\begin{aligned} &S_{p}\bigl(0^{+}\bigr)=T_{q}\bigl(0^{+} \bigr)=0, \\ &W_{p,q}(x)=\frac{S_{p}(x)}{T_{q}(x)}=\frac {S_{p}(x)-S_{p}(0^{+})}{T_{q}(x)-T_{q}(0^{+})}= \textstyle\begin{cases} \frac{q}{p}\frac{1- (\frac{\sin x}{x} )^{p}}{ (\frac{\tan x}{x} )^{q}-1},& pq\neq0, \\ \frac{1}{p}\frac{1- (\frac{\sin x}{x} )^{p}}{\log\frac{\tan x}{x}},& p\neq0, q=0,\\ q \frac{\log\frac{x}{\sin x}}{ (\frac{\tan x}{x} )^{q}-1},& p=0, q\neq0,\\ \frac{\log (\frac{x}{\sin x} )}{\log (\frac{\tan x}{x} )},& p=q=0, \end{cases}\displaystyle \end{aligned}$$
(2.45)
$$\begin{aligned} &W_{p,q}\bigl(0^{+}\bigr)=\frac{1}{2}, \end{aligned}$$
(2.46)
$$\begin{aligned} &W_{p,q} \biggl({\frac{\pi}{2}}^{-} \biggr)= \frac{q}{p} \biggl[ \biggl(\frac {2}{\pi} \biggr)^{p}-1 \biggr] \quad(p\neq0, q< 0),\\ &W_{0,q} \biggl({\frac{\pi}{2}}^{-} \biggr)=\lim _{p\rightarrow 0}W_{p,q} \biggl({\frac{\pi}{2}}^{-} \biggr)=q\log\frac{2}{\pi}\quad (q< 0). \end{aligned}$$
(2.47)
Lemma 2.10
Let \(x\in(0, \pi/2)\), and \(W_{p, q}(x)\) be defined by (2.45). Then the following statements are true:
(1)
\(W_{p, q}(x)\) is strictly decreasing on \((0, \pi/2)\) if \(q\geq -1\) and \(p+2q+12/5\geq0\);
 
(2)
\(W_{p, q}(x)\) is strictly increasing on \((0, \pi/2)\) if \(-37/35< q\leq-1\) and \(p\leq\pi^{2}/4-3\);
 
(3)
\(W_{p, q}(x)\) is strictly increasing on \((0, \pi/2)\) if \(q\leq -37/35\) and \(p+2q+12/5\leq0\).
 
Proof
Let \(pq\neq0\) and \(x\in(0, \pi/2)\). Then (2.43) and (2.44) lead to
$$\begin{aligned} \biggl[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)} \biggr]^{\prime} &= \biggl[\frac{\sin x-x\cos x}{x-\sin x\cos x} \biggl(\frac{\sin x}{x} \biggr)^{p-q}\cos^{q+1}x \biggr]^{\prime} \\ &=-\frac{x^{q-p-1}\sin^{p-q-1}x\cos^{q}x}{(x-\sin x\cos x)^{2}}A(x)\bigl[f(x)+p\bigr], \end{aligned}$$
(2.48)
where \(A(x)\) and \(f(x)\) are respectively given by (2.27) and (2.32).
(1) If \(q\geq-1\) and \(p+2q+12/5\geq0\), then from Lemma 2.9(1) and (2) and from (2.48) we have
$$ \biggl[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)} \biggr]^{\prime}< -\frac {x^{q-p-1}\sin^{p-q-1}x\cos^{q}x}{(x-\sin x\cos x)^{2}}A(x) \biggl(p+2q+\frac{12}{5} \biggr)\leq0 $$
(2.49)
for \(x\in(0, \pi/2)\).
Therefore, Lemma 2.10(1) follows easily from (2.45) and (2.49) together with Lemma 2.1.
(2) If \(-37/35< q\leq-1\) and \(p\leq\pi^{2}/4-3\), then (2.48) and Lemma 2.9(1) lead to
$$\begin{aligned} \biggl[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)} \biggr]^{\prime} &\geq -\frac{x^{q-p-1}\sin^{p-q-1}x\cos^{q}x}{(x-\sin x\cos x)^{2}}A(x) \biggl[p+\frac{C(x)-B(x)}{A(x)} \biggr] \\ &>-\frac{x^{q-p-1}\sin^{p-q-1}x\cos^{q}x}{(x-\sin x\cos x)^{2}}A(x) \biggl(p+3-\frac{\pi^{2}}{4} \biggr)\geq0 \end{aligned}$$
(2.50)
for \(x\in(0, \pi/2)\).
Therefore, Lemma 2.10(2) follows from (2.45) and (2.50) together with Lemma 2.1.
(3) If \(q\leq-37/35\) and \(p+2q+12/5\leq0\), then Lemma 2.9(3) and (2.48) lead to the conclusion that
$$ \biggl[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)} \biggr]^{\prime}>-\frac {x^{q-p-1}\sin^{p-q-1}x\cos^{q}x}{(x-\sin x\cos x)^{2}}A(x) \biggl(p+2q+\frac{12}{5} \biggr)\geq0 $$
(2.51)
for \(x\in(0, \pi/2)\).
Therefore, Lemma 2.10(3) follows from (2.45) and (2.51) together with Lemma 2.1. □
Remark 2.2
It is not difficult to verify that (2.48) is also true if \(pq=0\).

3 Main results

Let
$$\begin{aligned}& E_{1}= \biggl\{ (p, q)\Big|q\geq-1, p+2q+\frac{12}{5}\geq0 \biggr\} , \end{aligned}$$
(3.1)
$$\begin{aligned}& E_{2}= \biggl\{ (p, q)\Big|-\frac{37}{35}< q\leq-1, p\leq \frac{\pi^{2}}{4}-3 \biggr\} , \end{aligned}$$
(3.2)
$$\begin{aligned}& E_{3}= \biggl\{ (p, q)\Big| q\leq-\frac{37}{35}, p+2q+ \frac{12}{5}\leq 0 \biggr\} , \end{aligned}$$
(3.3)
$$\begin{aligned}& D_{1}= \bigl\{ (p, q)\big| pq(p+2q)>0 \bigr\} ,\qquad D_{2}= \bigl\{ (p, q)| pq(p+2q)< 0 \bigr\} , \end{aligned}$$
(3.4)
$$\begin{aligned}& D_{3}= \bigl\{ (p, q)\big| p>0, q< 0 \bigr\} ,\qquad D_{4}= \bigl\{ (p, q)|p< 0, q< 0 \bigr\} , \end{aligned}$$
(3.5)
$$\begin{aligned}& G_{1}=E_{1}\cap D_{1},\qquad G_{2}=E_{2} \cup E_{3}\cap D_{2}, \end{aligned}$$
(3.6)
$$\begin{aligned}& G_{3}=E_{1}\cap D_{2},\qquad G_{4}=E_{2} \cup E_{3}\cap D_{1}, \end{aligned}$$
(3.7)
$$\begin{aligned}& G_{5}=E_{1}\cap D_{3},\qquad G_{6}=E_{2} \cup E_{3}\cap D_{4}, \end{aligned}$$
(3.8)
$$\begin{aligned}& G_{7}=E_{1}\cap D_{4},\qquad G_{8}=E_{2} \cup E_{3}\cap D_{3}. \end{aligned}$$
(3.9)
Then (3.1)-(3.9) lead to
$$\begin{aligned} G_{1}={}& \bigl\{ (p,q)|p>0, q>0 \bigr\} \cup \bigl\{ (p,q)|0< p< -2q, q\geq -1 \bigr\} \\ &{}\cup \biggl\{ (p,q)\Big|q>0, -\frac{12}{5}\leq p+2q< 0 \biggr\} , \end{aligned}$$
(3.10)
$$\begin{aligned} G_{2}={}&G_{6}= \biggl\{ (p,q)\Big|p\leq\frac{\pi^{2}}{4}-3, q \leq -1 \biggr\} \\ &{}\cup \biggl\{ (p,q)\Big|\frac{\pi^{2}}{4}-3< p< 0, q\leq-\frac{37}{35}, p+2q+ \frac{12}{5}\leq0 \biggr\} , \end{aligned}$$
(3.11)
$$\begin{aligned} G_{3}={}& \bigl\{ (p,q)|p< 0, p+2q>0 \bigr\} \cup \bigl\{ (p,q)|-1\leq q< 0, p+2q>0 \bigr\} \\ &{}\cup \biggl\{ (p,q)|-1\leq q< 0, -2q-\frac{12}{5}\leq p< 0 \biggr\} , \end{aligned}$$
(3.12)
$$\begin{aligned} G_{4}={}&G_{8}= \biggl\{ (p,q)\Big|0< p\leq-2q-\frac{12}{5} \biggr\} , \end{aligned}$$
(3.13)
$$\begin{aligned} G_{5}={}& \bigl\{ (p,q)|p>0, -1\leq q< 0 \bigr\} , \end{aligned}$$
(3.14)
$$\begin{aligned} G_{7}={}& \biggl\{ (p,q)\Big|-1\leq q< 0,-2q-\frac{12}{5}\leq p< 0 \biggr\} . \end{aligned}$$
(3.15)
Theorem 3.1
Let \(G_{1}\), \(G_{2}\), \(G_{3}\), and \(G_{4}\) be respectively defined by (3.10)-(3.13). Then the Wilker-type inequality
$$ \frac{2q}{p+2q} \biggl(\frac{\sin x}{x} \biggr)^{p}+ \frac{p}{p+2q} \biggl(\frac{\tan x}{x} \biggr)^{q}>1 $$
(3.16)
holds for all \(x\in(0, \pi/2)\) if \((p, q)\in G_{1}\cup G_{2}\), and inequality (3.16) is reversed if \((p, q)\in G_{3}\cup G_{4}\).
Proof
Let \(W_{p,q}(x)\) be defined by (2.45). We only prove that inequality (3.16) holds for all \(x\in(0, \pi/2)\) if \((p, q)\in G_{1}\cup G_{2}\); the reversed inequality for \((p, q)\in G_{3}\cup G_{4}\) can be proved by a completely similar method.
We divide the proof into two cases.
Case 1 \((p, q)\in G_{1}\). Then (3.1), (3.4), and (3.6) lead to
$$\begin{aligned}& q\geq-1,\quad p+2q+\frac{12}{5}\geq0, \end{aligned}$$
(3.17)
$$\begin{aligned}& pq(p+2q)>0. \end{aligned}$$
(3.18)
It follows from (2.45), (2.46), Lemma 2.10(1), and (3.17) that
$$ w_{p, q}(x)=\frac{q}{p}\frac{1-(\frac{\sin x}{x})^{p}}{ (\frac{\tan x}{x} )^{q}-1}< \frac{1}{2} $$
(3.19)
for \(x\in(0, \pi/2)\).
Therefore, inequality (3.16) follows easily from (3.18) and (3.19).
Case 2 \((p, q)\in G_{2}\). Then from (2.45), (2.46), Lemma 2.10(2) and (3), (3.2)-(3.4), and (3.6) we clearly see that
$$ w_{p, q}(x)=\frac{q}{p}\frac{1-(\frac{\sin x}{x})^{p}}{ (\frac{\tan x}{x} )^{q}-1}>\frac{1}{2} $$
(3.20)
and
$$ pq(p+2q)< 0. $$
(3.21)
Therefore, inequality (3.16) follows from (3.20) and (3.21). □
Theorem 3.2
Let \(G_{5}\), \(G_{6}\), \(G_{7}\), and \(G_{8}\) be respectively defined by (3.11) and (3.13)-(3.15). Then the Wilker-type inequality
$$ \biggl(\frac{\pi}{2} \biggr)^{p} \biggl(\frac{\sin x}{x} \biggr)^{p}+ \biggl[1- \biggl(\frac{\pi}{2} \biggr)^{p} \biggr] \biggl(\frac{\tan x}{x} \biggr)^{q}< 1 $$
(3.22)
holds for all \(x\in(0, \pi/2)\) if \((p, q)\in G_{5}\cup G_{6}\), and inequality (3.22) is reversed if \((p, q)\in G_{7}\cup G_{8}\).
Proof
Let \(W_{p,q}(x)\) be defined by (2.45). We only prove that inequality (3.22) holds for all \(x\in(0, \pi/2)\) if \((p, q)\in G_{5}\cup G_{6}\); the reversed inequality for \((p, q)\in G_{7}\cup G_{8}\) can be proved by a completely similar method.
We divide the proof into two cases.
Case 1 \((p, q)\in G_{5}\). Then from (2.45), (2.47), Lemma 2.10(1), (3.1), (3.5), and (3.8) we clearly see that
$$ w_{p, q}(x)=\frac{q}{p}\frac{1-(\frac{\sin x}{x})^{p}}{ (\frac{\tan x}{x} )^{q}-1}>\frac{q}{p} \biggl[ \biggl(\frac{2}{\pi} \biggr)^{p}-1 \biggr] $$
(3.23)
and
$$ p>0. $$
(3.24)
Therefore, inequality (3.22) follows easily from (3.23) and (3.24).
Case 2 \((p, q)\in G_{6}\). Then (2.45), (2.47), Lemma 2.10(2) and (3), (3.2), (3.3), (3.5), and (3.8) lead to the conclusion that
$$ w_{p, q}(x)=\frac{q}{p}\frac{1-(\frac{\sin x}{x})^{p}}{ (\frac{\tan x}{x} )^{q}-1}< \frac{q}{p} \biggl[ \biggl(\frac{2}{\pi} \biggr)^{p}-1 \biggr] $$
(3.25)
and
$$ p< 0. $$
(3.26)
Therefore, inequality (3.22) follows easily from (3.25) and (3.26). □

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 11371125, 61374086, and 11401191 and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literatur
2.
Zurück zum Zitat Sumner, JS, Jagers, AA, Vowe, M, Anglesio, J: Inequalities involving trigonometric functions. Am. Math. Mon. 98(3), 264-267 (1991) MathSciNetCrossRef Sumner, JS, Jagers, AA, Vowe, M, Anglesio, J: Inequalities involving trigonometric functions. Am. Math. Mon. 98(3), 264-267 (1991) MathSciNetCrossRef
3.
Zurück zum Zitat Wu, S-H, Srivastava, HM: A weighted and exponential generalization of Wilker’s inequality and its applications. Integral Transforms Spec. Funct. 18(7-8), 529-535 (2007) MathSciNetCrossRefMATH Wu, S-H, Srivastava, HM: A weighted and exponential generalization of Wilker’s inequality and its applications. Integral Transforms Spec. Funct. 18(7-8), 529-535 (2007) MathSciNetCrossRefMATH
4.
Zurück zum Zitat Wu, S-H: On extension and refinement of Wilker’s inequality. Rocky Mt. J. Math. 39(2), 683-687 (2009) CrossRefMATH Wu, S-H: On extension and refinement of Wilker’s inequality. Rocky Mt. J. Math. 39(2), 683-687 (2009) CrossRefMATH
5.
Zurück zum Zitat Neuman, E, Sándor, J: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715-723 (2010) MathSciNetMATH Neuman, E, Sándor, J: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715-723 (2010) MathSciNetMATH
6.
Zurück zum Zitat Neuman, E: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15(2), 271-279 (2012) MathSciNetMATH Neuman, E: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15(2), 271-279 (2012) MathSciNetMATH
7.
Zurück zum Zitat Sándor, J: The Huygens and Wilker-type inequalities as inequalities for means of two arguments. Adv. Stud. Contemp. Math. 22(4), 487-498 (2012) MathSciNetMATH Sándor, J: The Huygens and Wilker-type inequalities as inequalities for means of two arguments. Adv. Stud. Contemp. Math. 22(4), 487-498 (2012) MathSciNetMATH
8.
Zurück zum Zitat Chen, C-P, Sándor, J: Inequality chains for Wilker, Huygens and Lazarević type inequalities. J. Math. Inequal. 8(1), 55-67 (2014) MathSciNetCrossRefMATH Chen, C-P, Sándor, J: Inequality chains for Wilker, Huygens and Lazarević type inequalities. J. Math. Inequal. 8(1), 55-67 (2014) MathSciNetCrossRefMATH
9.
Zurück zum Zitat Wu, S-H, Yue, H-P, Deng, Y-P, Chu, Y-M: Several improvements of Mitrinović-Adamović and Lazarević’s inequalities with applications to the sharpening of Wilker-type inequalities. J. Nonlinear Sci. Appl. 9(4), 1755-1765 (2016) MathSciNetMATH Wu, S-H, Yue, H-P, Deng, Y-P, Chu, Y-M: Several improvements of Mitrinović-Adamović and Lazarević’s inequalities with applications to the sharpening of Wilker-type inequalities. J. Nonlinear Sci. Appl. 9(4), 1755-1765 (2016) MathSciNetMATH
10.
Zurück zum Zitat Wu, S-H, Li, S-G, Bencze, M: Sharpened versions of Mitrinović-Adamović, Lazarević and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688-2696 (2016) MathSciNetMATH Wu, S-H, Li, S-G, Bencze, M: Sharpened versions of Mitrinović-Adamović, Lazarević and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688-2696 (2016) MathSciNetMATH
11.
12.
Zurück zum Zitat Sun, Z-J, Zhu, L: On Wilker-type inequalities. ISRN Math. Anal. 2011, Article ID 681702 (2011) MathSciNetMATH Sun, Z-J, Zhu, L: On Wilker-type inequalities. ISRN Math. Anal. 2011, Article ID 681702 (2011) MathSciNetMATH
13.
Zurück zum Zitat Wu, S-H, Srivastava, HM: A further refinement of Wilker’s inequality. Integral Transforms Spec. Funct. 19(9-10), 757-765 (2008) MathSciNetCrossRefMATH Wu, S-H, Srivastava, HM: A further refinement of Wilker’s inequality. Integral Transforms Spec. Funct. 19(9-10), 757-765 (2008) MathSciNetCrossRefMATH
14.
Zurück zum Zitat Yang, Z-H: The sharp inequalities related to Wilker type. Math. Inequal. Appl. 17(3), 1015-1026 (2014) MathSciNetMATH Yang, Z-H: The sharp inequalities related to Wilker type. Math. Inequal. Appl. 17(3), 1015-1026 (2014) MathSciNetMATH
15.
Zurück zum Zitat Yang, Z-H, Chu, Y-M: Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, Article ID 166 (2014) MathSciNetCrossRef Yang, Z-H, Chu, Y-M: Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, Article ID 166 (2014) MathSciNetCrossRef
17.
Zurück zum Zitat Baricz, Á, Sándor, J: Extensions of the generalized Wilker inequality to Bessel functions. J. Math. Inequal. 2(3), 397-406 (2008) MathSciNetCrossRefMATH Baricz, Á, Sándor, J: Extensions of the generalized Wilker inequality to Bessel functions. J. Math. Inequal. 2(3), 397-406 (2008) MathSciNetCrossRefMATH
18.
Zurück zum Zitat Zhu, L: Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, Article ID 485842 (2009) MathSciNetMATH Zhu, L: Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, Article ID 485842 (2009) MathSciNetMATH
19.
Zurück zum Zitat Sándor, J: On some Wilker and Huygens type trigonometric-hyperbolic inequalities. Proc. Jangjeon Math. Soc. 15(2), 145-153 (2012) MathSciNetMATH Sándor, J: On some Wilker and Huygens type trigonometric-hyperbolic inequalities. Proc. Jangjeon Math. Soc. 15(2), 145-153 (2012) MathSciNetMATH
20.
Zurück zum Zitat Chen, C-P, Cheung, W-S: Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Integral Transforms Spec. Funct. 23(5), 325-336 (2012) MathSciNetCrossRefMATH Chen, C-P, Cheung, W-S: Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Integral Transforms Spec. Funct. 23(5), 325-336 (2012) MathSciNetCrossRefMATH
21.
23.
Zurück zum Zitat Chen, C-P: Wilker and Huygens type inequalities for the lemniscate functions II. Math. Inequal. Appl. 16(2), 577-586 (2013) MathSciNetMATH Chen, C-P: Wilker and Huygens type inequalities for the lemniscate functions II. Math. Inequal. Appl. 16(2), 577-586 (2013) MathSciNetMATH
24.
Zurück zum Zitat Chen, C-P: Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions. Integral Transforms Spec. Funct. 23(12), 865-873 (2012) MathSciNetCrossRefMATH Chen, C-P: Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions. Integral Transforms Spec. Funct. 23(12), 865-873 (2012) MathSciNetCrossRefMATH
25.
Zurück zum Zitat Neuman, E: Wilker and Huygens-type inequalities for generalized trigonometric and for generalized hyperbolic functions. Appl. Math. Comput. 230, 211-217 (2014) MathSciNet Neuman, E: Wilker and Huygens-type inequalities for generalized trigonometric and for generalized hyperbolic functions. Appl. Math. Comput. 230, 211-217 (2014) MathSciNet
26.
Zurück zum Zitat Neuman, E: Wilker- and Huygens-type inequalities for Jacobian elliptic and theta functions. Integral Transforms Spec. Funct. 25(3), 240-248 (2014) MathSciNetCrossRefMATH Neuman, E: Wilker- and Huygens-type inequalities for Jacobian elliptic and theta functions. Integral Transforms Spec. Funct. 25(3), 240-248 (2014) MathSciNetCrossRefMATH
27.
Zurück zum Zitat Mortici, C: A subtly analysis of Wilker inequality. Appl. Math. Comput. 231, 516-520 (2014) MathSciNet Mortici, C: A subtly analysis of Wilker inequality. Appl. Math. Comput. 231, 516-520 (2014) MathSciNet
28.
29.
Zurück zum Zitat Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH
30.
Zurück zum Zitat Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1-37 (2000) MathSciNetCrossRef Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1-37 (2000) MathSciNetCrossRef
31.
Zurück zum Zitat Biernacki, M, Krzyż, J: On the monotonity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 9(1), 135-147 (1955) MathSciNetMATH Biernacki, M, Krzyż, J: On the monotonity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 9(1), 135-147 (1955) MathSciNetMATH
32.
Zurück zum Zitat Editorial Committee of Mathematics Handbook: Mathematics Handbook. Peoples’ Education Press, Beijing (1979) (in Chinese) Editorial Committee of Mathematics Handbook: Mathematics Handbook. Peoples’ Education Press, Beijing (1979) (in Chinese)
33.
Zurück zum Zitat Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington (1964) MATH Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington (1964) MATH
Metadaten
Titel
Generalized Wilker-type inequalities with two parameters
verfasst von
Hong-Hu Chu
Zhen-Hang Yang
Yu-Ming Chu
Wen Zhang
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1127-8

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe