Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

Some new generalized Volterra-Fredholm type discrete fractional sum inequalities and their applications

verfasst von: Haidong Liu, Fanwei Meng

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In this paper, we present some new Volterra-Fredholm-type discrete fractional sum inequalities. These inequalities can be used as handy and powerful tools in the study of certain fractional sum-difference equations. Some applications are also presented to illustrate the usefulness of our results.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

It is well known that Gronwall-Bellman-type inequalities and their various generalizations have historically great importance in the qualitative analysis of differential equations, difference equations, and fractional differential equations. During the past few years, there are a lot of mathematical results about the generalized Gronwall-Bellman-type inequalities and their applications (see, e.g., [113] and the references therein).
Recently, there has been an increase in study in the theory of discrete fractional calculus, and many interesting researches have been devoted to many topics of the fractional difference equations (see, e.g., [1429] and the references therein). However, compared with integer-order equations and fractional differential equations, Gronwall-Bellman-type inequalities for discrete fractional calculus receive less attention (see, e.g., [1820] and the references therein).
In this paper, we employ the Riemann-Liouville definition of the fractional difference initiated by Miller and Ross [30, 31], and developed by Atici and Eloe [1416, 18] to establish some Volterra-Fredholm-type discrete fractional sum inequalities, which are generalizations of Gronwall-Bellman forms. These inequalities can be used as handy and powerful tools in the analysis of certain classes of Volterra-Fredholm-type fractional sum-difference equations.
The paper is organized as follows. Some important definitions and results on discrete fractional calculus are collected in Section 2. Some new nonlinear Volterra-Fredholm-type discrete fractional sum inequalities are presented in Section 3. In the last section, as an application of the inequalities obtained, the boundedness and uniqueness of the solutions of certain Volterra-Fredholm fractional sum-difference equation are established.

2 Preliminaries

Throughout this paper, we denote \(\mathbf{N}_{t}=\{t,t+1,t+2,\ldots\}\), \(I_{t}=[t,T]\cap\mathbf{N}_{t}\), where \(t\in\mathbf{N}_{t}\), and \(T\in\mathbf{N}_{t}\) is a constant. Let \(\mathbf{R}_{+}=[0,\infty)\), and \(\sum_{s=k}^{n}f(s)=0\) for \(k>n\). Denote by \(C^{i}(M,N)\) the class of all i times continuously differentiable functions defined from a set M into a set N for \(i=1,2,\ldots \) . As usual, let z be a real-valued function on \(\mathbf{N}_{t}\), and the difference operator Δ on z be defined as \(\Delta z(n)=z(n+1)-z(n)\), \(n\in\mathbf{N}_{t}\).
Next, we list some important definitions and results on discrete fractional calculus.
Definition 2.1
([16])
Let a be any real number, α be any positive real number, and \(\sigma(s)=s+1\). The α-th fractional sum (α-sum) of f is defined by
$$\Delta_{a}^{-\alpha}f(t)=\frac{1}{\Gamma(\alpha)}\sum _{s=a}^{t-\alpha }\bigl(t-\sigma(s)\bigr)^{(\alpha-1)}f(s). $$
Here f is defined for \(s=a\ (\operatorname{mod} 1)\), and \(\Delta_{a}^{-\alpha}f\) is defined for \(t=a+\alpha\ (\operatorname{mod} 1)\); in particular, \(\Delta_{a}^{-\alpha}\) maps functions defined on \(\mathbf{N}_{a}\) to functions defined on \(\mathbf{N}_{a+\alpha }\). We recall that the falling factorial is defined as \(t^{(\alpha )}=\frac{\Gamma(t+1)}{\Gamma(t-\alpha+1)}\).
Definition 2.2
([16])
The μ-th fractional difference is defined as
$$\Delta^{\mu}u(t)=\Delta^{m-\nu}u(t)=\Delta^{m} \bigl( \Delta^{-\nu}u(t) \bigr), $$
where \(\mu>0\) and \(m-1<\mu<m\), where m denotes a positive integer, and \(-\nu=\mu -m\).
Lemma 2.1
(Pachpatte [1], p.103)
Let \(u(t)\) and \(b(t)\) be nonnegative functions defined for \(t\in\mathbf{N}_{0}\), and c be a nonnegative constant. Let \(g(u)\) be a nondecreasing continuous function defined on \(\mathbf{R}_{+}\) with \(g(u)>0\) for \(u>0\). If
$$u(t)\leq c+\sum_{s=0}^{t-1}b(s)g\bigl(u(s) \bigr) $$
for \(t\in\mathbf{N}_{0}\), then, for \(0\leq t\leq t_{1}\), \(t, t_{1}\in\mathbf{N}_{0}\),
$$u(t)\leq G^{-1} \Biggl[G(c)+\sum_{s=0}^{t-1}b(s) \Biggr], $$
where \(G(r)=\int_{r_{0}}^{r}\frac{1}{g(s)}\, \mathrm{d}s\), \(r>0\), \(r_{0}>0\) is arbitrary, \(G^{-1}\) is the inverse of G, and \(t_{1}\in\mathbf {N}_{0}\) is chosen so that \(G(c)+\sum_{s=0}^{t-1}b(s)\in \operatorname{Dom} (G^{-1})\) for all \(t\in\mathbf{N}_{0}\) such that \(0\leq t \leq t_{1}\).
For other important properties on the discrete fractional calculus, we refer the reader to [14, 15, 17].

3 Main results

Theorem 3.1
Assume that \(0<\alpha\leq1\) is a constant, \(u: \mathbf{N}_{\alpha-1}\rightarrow\mathbf{R}_{+}\), \(f, g:\mathbf {N}_{0}\rightarrow\mathbf{R}_{+}\) are functions, \(k\geq0\) is a constant, and \(p > q > 0\) are constants. Suppose that u satisfies
$$\begin{aligned} \begin{aligned}[b] u^{p}(n)\leq{}& k+\Delta_{0}^{-\alpha} \bigl[f(n)u^{q}(n+\alpha -1) \bigr] \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}g(s)u^{p}(s+ \alpha-1), \quad n\in I_{\alpha-1}. \end{aligned} \end{aligned}$$
(3.1)
If
$$ \lambda=2^{\frac{q}{p-q}}\sum_{s=0}^{T-\alpha}G(s,T)< 1, $$
(3.2)
then
$$ u(n)\leq \Biggl[A^{\frac{p-q}{p}}(T)+\frac{p-q}{p}\sum _{s=\alpha }^{n}f(s-\alpha) \Biggr]^{\frac{1}{p-q}},\quad n \in I_{\alpha-1}, $$
(3.3)
where
$$\begin{aligned}& A(T)=\frac{1}{1-\lambda} \Biggl\{ k+2^{\frac{q}{p-q}}\sum _{s=0}^{T-\alpha }G(s,T) \Biggl[\frac{p-q}{p}\sum _{\tau=\alpha}^{s+\alpha-1}f(\tau-\alpha ) \Biggr]^{\frac{p}{p-q}} \Biggr\} , \end{aligned}$$
(3.4)
$$\begin{aligned}& G(s,n)=\frac{1}{\Gamma(\alpha)}(n-s-1)^{(\alpha-1)}g(s). \end{aligned}$$
(3.5)
Proof
Let \(k>0\). From (3.1) and (3.5) we have
$$\begin{aligned} u^{p}(n) \leq& k+\frac{1}{\Gamma(\alpha)}\sum _{s=0}^{n-\alpha}(n-s-1)^{(\alpha-1)}f(s)u^{q}(s+ \alpha-1) \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}g(s)u^{p}(s+ \alpha-1) \\ =&k+\sum_{s=0}^{n-\alpha}F(s,n)u^{q}(s+ \alpha-1) \\ &{}+\sum_{s=0}^{T-\alpha }G(s,T)u^{p}(s+ \alpha-1),\quad n\in I_{\alpha-1}, \end{aligned}$$
(3.6)
where
$$F(s,n)=\frac{1}{\Gamma(\alpha)}(n-s-1)^{(\alpha-1)}f(s). $$
Define
$$\begin{aligned} z(n) =& k+\sum_{s=0}^{n-\alpha}F(s,n)u^{q}(s+ \alpha-1) \\ &{}+\sum_{s=0}^{T-\alpha }G(s,T)u^{p}(s+ \alpha-1),\quad n\in I_{\alpha-1}. \end{aligned}$$
(3.7)
Then \(z(n)\geq0\) is nondecreasing,
$$ z(\alpha-1)=k+\sum_{s=0}^{T-\alpha}G(s,T)u^{p}(s+ \alpha-1), $$
(3.8)
and
$$ u^{p}(n)\leq z(n),\quad n\in I_{\alpha-1}. $$
(3.9)
By the definitions of \(F(s,n)\) and \(t^{(\alpha)}\) we can easily get that \(F(s,n)\) is decreasing in n for each \(s\in\mathbf{N}_{0}\). So from a straightforward computation, for \(n\in I_{\alpha}\), we obtain that
$$\begin{aligned} z(n)-z(n-1) =&F(n-\alpha,n)u^{q}(n-1) \\ &{}+\sum_{s=0}^{n-\alpha-1} \bigl[F(s,n)-F(s,n-1) \bigr]u^{q}(s+\alpha-1) \\ \leq& F(n-\alpha,n)u^{q}(n-1) \\ \leq& F(n-\alpha,n)z^{\frac{q}{p}}(n-1) \\ =&f(n-\alpha)z^{\frac{q}{p}}(n-1). \end{aligned}$$
(3.10)
Using the monotonicity of z, we deduce
$$ z^{\frac{q}{p}}(n-1)\geq z^{\frac{q}{p}}(\alpha-1)= \Biggl(k+\sum _{s=0}^{T-\alpha}G(s,T)u^{p}(s+\alpha-1) \Biggr)^{\frac{q}{p}}>0,\quad n\in I_{\alpha}. $$
(3.11)
So from (3.10) and (3.11) we have
$$\frac{z(n)-z(n-1)}{z^{\frac{q}{p}}(n-1)}\leq f(n-\alpha),\quad n\in I_{\alpha}, $$
that is,
$$ \frac{\Delta z(n-1)}{z^{\frac{q}{p}}(n-1)}\leq f(n-\alpha),\quad n\in I_{\alpha}. $$
(3.12)
On the other hand, by the mean value theorem we obtain
$$\begin{aligned} \Delta \biggl(\frac{p}{p-q}z^{\frac{p-q}{p}}(n-1) \biggr) =& \frac{p}{p-q}z^{\frac{p-q}{p}}(n)- \frac{p}{p-q}z^{\frac {p-q}{p}}(n-1) \\ =&\xi^{-\frac{q}{p}}\Delta z(n-1)=\frac{\Delta z(n-1)}{\xi^{\frac {q}{p}}} \\ \leq&\frac{\Delta z(n-1)}{z^{\frac{q}{p}}(n-1)}, \quad \xi\in\bigl[z(n-1),z(n)\bigr]. \end{aligned}$$
(3.13)
So from (3.12) and (3.13) we obtain
$$ \Delta \biggl(\frac{p}{p-q}z^{\frac{p-q}{p}}(n-1) \biggr)\leq f(n-\alpha), \quad n\in I_{\alpha}. $$
(3.14)
Setting \(n=s\) in inequality (3.14) and summing with respect to s from α to \(n-1\), we get
$$\sum_{s=\alpha}^{n-1}\Delta \biggl( \frac{p}{p-q}z^{\frac{p-q}{p}}(s-1) \biggr)\leq\sum _{s=\alpha}^{n-1}f(s-\alpha), $$
that is,
$$ z^{\frac{p-q}{p}}(n-1)\leq z^{\frac{p-q}{p}}(\alpha-1)+\frac{p-q}{p}\sum _{s=\alpha}^{n-1}f(s-\alpha),\quad n\in I_{\alpha}. $$
(3.15)
Then from inequality (3.15) we conclude that
$$z(n-1)\leq \Biggl[z^{\frac{p-q}{p}}(\alpha-1)+\frac{p-q}{p}\sum _{s=\alpha }^{n-1}f(s-\alpha) \Biggr]^{\frac{p}{p-q}}, \quad n \in I_{\alpha}, $$
that is,
$$ z(n)\leq \Biggl[z^{\frac{p-q}{p}}(\alpha-1)+\frac{p-q}{p}\sum _{s=\alpha }^{n}f(s-\alpha) \Biggr]^{\frac{p}{p-q}},\quad n \in I_{\alpha-1}. $$
(3.16)
By (3.8), (3.9), and (3.16) we get
$$z(\alpha-1)\leq k+\sum_{s=0}^{T-\alpha}G(s,T) \Biggl[z^{\frac {p-q}{p}}(\alpha-1)+\frac{p-q}{p}\sum _{\tau=\alpha}^{s+\alpha-1}f(\tau -\alpha) \Biggr]^{\frac{p}{p-q}}. $$
Therefore, using the inequality \((a+b)^{\mu}\leq2^{\mu-1}(a^{\mu}+b^{\mu})\), \(\mu\geq1\), we have
$$ z(\alpha-1)\leq k+\sum_{s=0}^{T-\alpha}G(s,T)2^{\frac{q}{p-q}} \Biggl\{ z(\alpha-1) + \Biggl[\frac{p-q}{p}\sum_{\tau=\alpha}^{s+\alpha-1}f( \tau-\alpha) \Biggr]^{\frac{p}{p-q}} \Biggr\} . $$
(3.17)
Hence, in view of (3.2), we obtain
$$ z(\alpha-1)\leq\frac{1}{1-\lambda} \Biggl\{ k+2^{\frac{q}{p-q}}\sum _{s=0}^{T-\alpha}G(s,T) \Biggl[\frac{p-q}{p}\sum _{\tau=\alpha}^{s+\alpha -1}f(\tau-\alpha) \Biggr]^{\frac{p}{p-q}} \Biggr\} =A(T), $$
(3.18)
where \(A(T)\) is defined as in (3.4). From (3.16) and (3.18) we get
$$ z(n)\leq \Biggl[A^{\frac{p-q}{p}}(T)+\frac{p-q}{p}\sum _{s=\alpha }^{n}f(s-\alpha) \Biggr]^{\frac{p}{p-q}},\quad n \in I_{\alpha-1}. $$
(3.19)
Using (3.9) and (3.19), we obtain
$$ u(n)\leq \Biggl[A^{\frac{p-q}{p}}(T)+\frac{p-q}{p}\sum _{s=\alpha }^{n}f(s-\alpha) \Biggr]^{\frac{1}{p-q}},\quad n \in I_{\alpha-1}. $$
(3.20)
If \(k=0\), then we carry out the above procedure with \(\varepsilon>0\) instead of k and subsequently let \(\varepsilon\rightarrow0\). This completes the proof. □
Theorem 3.2
Assume that \(0<\alpha\leq1\) is a constant, \(u: \mathbf{N}_{\alpha-1}\rightarrow\mathbf{R}_{+}\), \(g, h:\mathbf {N}_{0}\rightarrow\mathbf{R}_{+}\) are functions, \(k\geq0\) is a constant, \(\varphi\in C^{1}(\mathbf{R}_{+},\mathbf{R}_{+})\) is an increasing function with \(\varphi(\infty)=\infty\) on \(\mathbf{R}_{+}\), and \(\psi_{i}:\mathbf{R}_{+}\rightarrow\mathbf{R}_{+}\) is a nondecreasing continuous function with \(\psi_{i}(u)>0\) for \(u>0\), \(i=1,2\). Suppose that there is a nondecreasing continuous function \(\psi:\mathbf {R}_{+}\rightarrow\mathbf{R}_{+}\) such that both \(\psi_{1}\) and \(\psi_{2}\) are less than or equal to ψ, \(\Psi(r)=\int_{r_{0}}^{r}\frac{1}{\psi(\varphi^{-1}(s))}\,\mathrm{d}s\), \(r\geq r_{0}>0\), with \(\lim_{r\rightarrow\infty}\Psi(r)=\infty\), and \(\Omega(t)=\Psi(2t-k)-\Psi(t)\) is increasing for \(t\geq k\). If u satisfies
$$\begin{aligned} \varphi\bigl(u(n)\bigr) \leq& k+\Delta_{0}^{-\alpha} \bigl[g(n)\psi _{1}\bigl(u(n+\alpha-1)\bigr) \bigr] \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}h(s) \psi_{2}\bigl(u(s+\alpha-1)\bigr),\quad n\in I_{\alpha-1}, \end{aligned}$$
(3.21)
then
$$ u(n)\leq\varphi^{-1} \Biggl\{ \Psi^{-1} \Biggl[\Psi \Biggl( \Omega^{-1} \Biggl(\sum_{s=\alpha}^{T}f(s- \alpha) \Biggr) \Biggr)+\sum_{s=\alpha}^{n}f(s- \alpha) \Biggr] \Biggr\} , \quad n\in I_{\alpha-1}, $$
(3.22)
where \(f:\mathbf{N}_{0}\rightarrow\mathbf{R}_{+}\) is a function such that both g and h are less than or equal to f, and \(\varphi^{-1}\), \(\Psi^{-1}\), \(\Omega^{-1}\) are the inverse functions of φ, Ψ, Ω, respectively.
Proof
Let \(k>0\). From the assumptions on g, h, \(\psi_{i}\) (\(i=1,2\)) and (3.21) we have
$$\begin{aligned} \varphi\bigl(u(n)\bigr) \leq&k+\frac{1}{\Gamma(\alpha)}\sum _{s=0}^{n-\alpha}(n-s-1)^{(\alpha -1)}f(s)\psi\bigl(u(s+ \alpha-1)\bigr) \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}f(s) \psi\bigl(u(s+\alpha-1)\bigr) \\ =&k+\sum_{s=0}^{n-\alpha}F(s,n)\psi\bigl(u(s+ \alpha-1)\bigr) \\ &{}+\sum_{s=0}^{T-\alpha }F(s,T)\psi \bigl(u(s+\alpha-1)\bigr), \quad n\in I_{\alpha-1}, \end{aligned}$$
(3.23)
where
$$F(s,n)=\frac{1}{\Gamma(\alpha)}(n-s-1)^{(\alpha-1)}f(s). $$
Define
$$\begin{aligned} z(n) =&k+\sum_{s=0}^{n-\alpha}F(s,n) \psi\bigl(u(s+\alpha-1)\bigr) \\ &{}+\sum_{s=0}^{T-\alpha }F(s,T)\psi\bigl(u(s+ \alpha-1)\bigr),\quad n\in I_{\alpha-1}. \end{aligned}$$
(3.24)
Then \(z(n)\geq0\) is nondecreasing,
$$ z(\alpha-1)=k+\sum_{s=0}^{T-\alpha}F(s,T)\psi \bigl(u(s+\alpha-1)\bigr), $$
(3.25)
and
$$ u(n)\leq\varphi^{-1}\bigl(z(n)\bigr),\quad n\in I_{\alpha-1}. $$
(3.26)
By the definitions of \(F(s,n)\) and \(t^{(\alpha)}\), we can easily get that \(F(s,n)\) is decreasing in n for each \(s\in\mathbf{N}_{0}\). So from (3.24) and a straightforward computation, for \(n\in I_{\alpha}\), we obtain that
$$\begin{aligned} z(n)-z(n-1) =&F(n-\alpha,n)\psi\bigl(u(n-1)\bigr) \\ &{}+\sum_{s=0}^{n-\alpha-1} \bigl[F(s,n)-F(s,n-1) \bigr]\psi\bigl(u(s+\alpha-1)\bigr) \\ \leq& F(n-\alpha,n)\psi\bigl(u(n-1)\bigr) \\ \leq& F(n-\alpha,n)\psi\bigl(\varphi^{-1}\bigl(z(n-1)\bigr)\bigr) \\ =&f(n-\alpha)\psi\bigl(\varphi^{-1}\bigl(z(n-1)\bigr)\bigr). \end{aligned}$$
(3.27)
Using the monotonicity of \(\varphi^{-1}\) and z, we deduce
$$ \varphi^{-1}\bigl(z(n-1)\bigr)>\varphi^{-1}\bigl(z(\alpha-1) \bigr)=\varphi^{-1} \Biggl(k+\sum_{s=0}^{T-\alpha}F(s,T) \psi\bigl(u(s+\alpha-1)\bigr) \Biggr)>0,\quad n\in I_{\alpha}. $$
(3.28)
So from (3.27) and (3.28) we have
$$\frac{z(n)-z(n-1)}{\psi(\varphi^{-1}(z(n-1)))}\leq f(n-\alpha),\quad n\in I_{\alpha}, $$
that is,
$$ \frac{\Delta z(n-1)}{\psi(\varphi^{-1}(z(n-1)))}\leq f(n-\alpha),\quad n\in I_{\alpha}. $$
(3.29)
On the other hand, by the mean value theorem and the monotonicity of \(\varphi^{-1}\) and ψ we obtain
$$\begin{aligned} \Delta\Psi\bigl(z(n-1)\bigr) =& \Psi\bigl(z(n)\bigr)- \Psi \bigl(z(n-1)\bigr) \\ =&\Psi'(\xi)\Delta z(n-1)=\frac{\Delta z(n-1)}{\psi(\varphi^{-1}(\xi ))} \\ \leq&\frac{\Delta z(n-1)}{\psi(\varphi^{-1}(z(n-1)))},\quad \xi\in \bigl[z(n-1),z(n)\bigr]. \end{aligned}$$
(3.30)
So from (3.29) and (3.30) we obtain
$$ \Delta\Psi\bigl(z(n-1)\bigr)\leq f(n-\alpha),\quad n\in I_{\alpha}. $$
(3.31)
Setting \(n=s\) in inequality (3.31) and summing with respect to s from α to \(n-1\), we get
$$\sum_{s=\alpha}^{n-1}\Delta\Psi\bigl(z(s-1)\bigr) \leq\sum_{s=\alpha }^{n-1}f(s-\alpha), $$
that is,
$$ \Psi\bigl(z(n-1)\bigr)\leq\Psi\bigl(z(\alpha-1)\bigr)+\sum _{s=\alpha}^{n-1}f(s-\alpha),\quad n\in I_{\alpha}. $$
(3.32)
Then from inequality (3.32) we conclude that
$$z(n-1)\leq\Psi^{-1} \Biggl[\Psi\bigl(z(\alpha-1)\bigr)+\sum _{s=\alpha }^{n-1}f(s-\alpha) \Biggr],\quad n\in I_{\alpha}, $$
that is,
$$ z(n)\leq\Psi^{-1} \Biggl[\Psi\bigl(z(\alpha-1)\bigr)+\sum _{s=\alpha}^{n}f(s-\alpha ) \Biggr],\quad n\in I_{\alpha-1}. $$
(3.33)
By (3.24) we get that
$$ 2z(\alpha-1)-k=k+2\sum_{s=0}^{T-\alpha}F(s,T)\psi \bigl(u(s+\alpha -1)\bigr)=z(T), $$
(3.34)
and then from (3.33) and (3.34) we have
$$2z(\alpha-1)-k=z(T)\leq\Psi^{-1} \Biggl[\Psi\bigl(z(\alpha-1)\bigr)+ \sum_{s=\alpha }^{T}f(s-\alpha) \Biggr], $$
that is,
$$ \Psi\bigl(2z(\alpha-1)-k\bigr)-\Psi\bigl(z(\alpha-1)\bigr)\leq\sum _{s=\alpha}^{T}f(s-\alpha ). $$
(3.35)
Since \(\Omega(t)=\Psi(2t-k)-\Psi(t)\) is increasing for \(t\geq k\), and Ω has an inverse function \(\Omega^{-1}\), from (3.35) we get
$$ z(\alpha-1)\leq\Omega^{-1} \Biggl(\sum_{s=\alpha}^{T}f(s- \alpha) \Biggr). $$
(3.36)
Substituting (3.36) into (3.33), we have
$$ z(n)\leq\Psi^{-1} \Biggl[\Psi \Biggl(\Omega^{-1} \Biggl(\sum _{s=\alpha }^{T}f(s-\alpha) \Biggr) \Biggr)+\sum _{s=\alpha}^{n}f(s-\alpha) \Biggr],\quad n\in I_{\alpha-1}. $$
(3.37)
Combining (3.37) with (3.26), we obtain the desired inequality (3.22). If \(k=0\), then we carry out the above procedure with \(\varepsilon>0\) instead of k and subsequently let \(\varepsilon\rightarrow0\). This completes the proof. □
For the particular case \(\varphi(u)=u\) and \(\psi_{1}(u)=\psi_{2}(u)=u\), Theorem 3.2 gives the following discrete fractional sum inequality.
Corollary 3.1
Let α, u, and k be defined as in Theorem  3.2, and \(f:\mathbf {N}_{0}\rightarrow\mathbf{R}_{+}\) be a function. If u satisfies
$$\begin{aligned} u(n) \leq& k+\Delta_{0}^{-\alpha} \bigl[f(n)u(n+\alpha -1) \bigr] \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}f(s)u(s+ \alpha-1),\quad n\in I_{\alpha-1}, \end{aligned}$$
and
$$\lambda=\exp \Biggl(\sum_{s=\alpha}^{T}f(s- \alpha) \Biggr)< 2, $$
then
$$ u(n)\leq\frac{k}{2-\lambda}\exp \Biggl(\sum_{s=\alpha}^{n}f(s- \alpha ) \Biggr),\quad n\in I_{\alpha-1}. $$
(3.38)
Proof
From the definitions of Ψ and Ω, letting \(\psi(u)=u\), we obtain
$$\begin{aligned}& \Psi(r)= \int_{r_{0}}^{r}\frac{1}{s}\,\mathrm{d}s=\ln \frac{r}{r_{0}},\quad r\geq r_{0}>0, \\& \Omega(t)=\Psi(2t-k)-\Psi(t)=\ln\frac{2t-k}{t}, \quad t\geq k, \end{aligned}$$
and hence \(\Psi^{-1}(r)=r_{0} \exp(r)\) and \(\Omega^{-1}(t)=\frac{k}{2- \exp(t)}\). From inequality (3.22) we obtain inequality (3.38). □
Theorem 3.3
Assume that \(0<\alpha\leq1\) is a constant, \(u: \mathbf{N}_{\alpha-1}\rightarrow\mathbf{R}_{+}\), \(g, h:\mathbf {N}_{0}\rightarrow\mathbf{R}_{+}\) are functions, \(k\geq0\) is a constant, \(\varphi\in C^{1}(\mathbf{R}_{+},\mathbf{R}_{+})\) with \(\varphi(0)=0\), \(\varphi(\infty)=\infty\), and \(\varphi'(u)>0\) for \(u>0\), the derivative \(\varphi'\) is increasing on \(\mathbf{R}_{+}\), and \(\psi_{i}:\mathbf{R}_{+}\rightarrow\mathbf{R}_{+}\) are nondecreasing continuous functions with \(\psi_{i}(u)>0\) for \(u>0\), \(i=1,2\). Suppose that there is a nondecreasing continuous function \(\psi:\mathbf {R}_{+}\rightarrow\mathbf{R}_{+}\) such that both \(\psi_{1}\) and \(\psi_{2}\) are less than or equal to ψ, \(G(r)=\int_{r_{0}}^{r}\frac{1}{\psi(s)}\,\mathrm{d}s\), \(r\geq r_{0}>0\), with \(\lim_{r\rightarrow\infty}G(r)=\infty\), and \(\Omega(t)=G(\varphi^{-1}(2t-k))-G(\varphi^{-1}(t))\) is increasing for \(t\geq k\). If u satisfies
$$\begin{aligned} \varphi\bigl(u(n)\bigr) \leq& k+\Delta_{0}^{-\alpha} \bigl[g(n)\varphi'\bigl(u(n+\alpha-1)\bigr)\psi_{1} \bigl(u(n+\alpha-1)\bigr) \bigr] \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}h(s) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi_{2}\bigl(u(s+ \alpha-1)\bigr), \\ & n\in I_{\alpha-1}, \end{aligned}$$
(3.39)
then
$$ u(n)\leq G^{-1} \Biggl\{ G \Biggl[ \varphi^{-1} \Biggl( \Omega^{-1} \Biggl(\sum_{s=\alpha}^{T}f(s- \alpha) \Biggr) \Biggr) \Biggr]+\sum_{s=\alpha}^{n}f(s- \alpha ) \Biggr\} , \quad n\in I_{\alpha-1}, $$
(3.40)
where \(f:\mathbf{N}_{0}\rightarrow\mathbf{R}_{+}\) is a function such that both g and h are less than or equal to f, and \(\varphi^{-1}\), \(G^{-1}\), and \(\Omega^{-1}\) are inverse functions of φ, G, and Ω, respectively.
Proof
Let \(k>0\). From the assumptions on g, h, \(\psi_{i}\) (\(i=1,2\)) and (3.39) we have
$$\begin{aligned} \varphi\bigl(u(n)\bigr) \leq&k+\frac{1}{\Gamma(\alpha)}\sum _{s=0}^{n-\alpha}(n-s-1)^{(\alpha -1)}f(s) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi\bigl(u(s+\alpha-1)\bigr) \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}f(s) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi\bigl(u(s+\alpha-1)\bigr) \\ =&k+\sum_{s=0}^{n-\alpha}F(s,n) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi\bigl(u(s+\alpha -1)\bigr) \\ &{}+\sum_{s=0}^{T-\alpha}F(s,T) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi\bigl(u(s+\alpha -1)\bigr),\quad n \in I_{\alpha-1}, \end{aligned}$$
(3.41)
where
$$F(s,n)=\frac{1}{\Gamma(\alpha)}(n-s-1)^{(\alpha-1)}f(s). $$
Define
$$\begin{aligned} z(n) =&k+\sum_{s=0}^{n-\alpha}F(s,n) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi\bigl(u(s+\alpha -1)\bigr) \\ &{}+\sum_{s=0}^{T-\alpha}F(s,T) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi\bigl(u(s+\alpha -1)\bigr), \quad n\in I_{\alpha-1}. \end{aligned}$$
(3.42)
Then \(z(n)\geq0\) is nondecreasing,
$$ z(\alpha-1)=k+\sum_{s=0}^{T-\alpha}F(s,T) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi \bigl(u(s+\alpha-1) \bigr), $$
(3.43)
and
$$ u(n)\leq\varphi^{-1}\bigl(z(n)\bigr),\quad n\in I_{\alpha-1}. $$
(3.44)
By the definition of \(F(s,n)\) and \(t^{(\alpha)}\), we can easily get that \(F(s,n)\) is decreasing in n for each \(s\in\mathbf{N}_{0}\). So from (3.42) and a straightforward computation, for \(n\in I_{\alpha}\), we obtain that
$$\begin{aligned}& z(n)-z(n-1) \\& \quad = F(n-\alpha,n)\varphi'\bigl(u(n-1)\bigr)\psi\bigl(u(n-1) \bigr) \\& \qquad {}+\sum_{s=0}^{n-\alpha-1} \bigl[F(s,n)-F(s,n-1) \bigr]\varphi'\bigl(u(s+\alpha -1)\bigr)\psi \bigl(u(s+\alpha-1)\bigr) \\& \quad \leq F(n-\alpha,n)\varphi'\bigl(u(n-1)\bigr)\psi\bigl(u(n-1) \bigr) \\& \quad \leq F(n-\alpha,n)\varphi'\bigl(\varphi^{-1} \bigl(z(n-1)\bigr)\bigr)\psi\bigl(\varphi ^{-1}\bigl(z(n-1)\bigr)\bigr) \\& \quad = f(n-\alpha)\varphi'\bigl(\varphi^{-1} \bigl(z(n-1)\bigr)\bigr)\psi\bigl(\varphi^{-1}\bigl(z(n-1)\bigr)\bigr). \end{aligned}$$
(3.45)
Using the monotonicity of \(\varphi'\), \(\varphi^{-1}\), and z, we deduce
$$\begin{aligned} \varphi'\bigl(\varphi^{-1}\bigl(z(n-1) \bigr)\bigr) \geq&\varphi'\bigl(\varphi ^{-1}\bigl(z( \alpha-1)\bigr)\bigr) \\ =&\varphi' \Biggl(\varphi^{-1} \Biggl(k+\sum _{s=0}^{T-\alpha}F(s,T)\varphi '\bigl(u(s+ \alpha-1)\bigr)\psi\bigl(u(s+\alpha-1)\bigr) \Biggr) \Biggr) \\ >&0,\quad n\in I_{\alpha}. \end{aligned}$$
(3.46)
So from (3.45) and (3.46) we have
$$\frac{z(n)-z(n-1)}{\varphi'[\varphi^{-1}(z(n-1))]}\leq f(n-\alpha)\psi \bigl(\varphi^{-1}\bigl(z(n-1) \bigr)\bigr), \quad n\in I_{\alpha}, $$
that is,
$$ \frac{\Delta z(n-1)}{\varphi'[\varphi^{-1}(z(n-1))]}\leq f(n-\alpha)\psi \bigl(\varphi^{-1}\bigl(z(n-1) \bigr)\bigr),\quad n\in I_{\alpha}. $$
(3.47)
On the other hand, by the mean value theorem and the monotonicity of \(\varphi'\) and \(\varphi^{-1}\) we have, for \(n\in I_{\alpha}\),
$$\begin{aligned} \Delta\varphi^{-1}\bigl(z(n-1)\bigr) =& \varphi^{-1}\bigl(z(n)\bigr)- \varphi^{-1}\bigl(z(n-1)\bigr) \\ =&\frac{1}{\varphi'(\varphi^{-1}(\xi))}\Delta z(n-1) \\ \leq&\frac{\Delta z(n-1)}{\varphi'[\varphi^{-1}(z(n-1))]},\quad \xi\in \bigl[z(n-1),z(n)\bigr]. \end{aligned}$$
(3.48)
So from (3.47) and (3.48) we obtain
$$ \Delta\varphi^{-1}\bigl(z(n-1)\bigr)\leq f(n-\alpha)\psi\bigl(\varphi ^{-1}\bigl(z(n-1)\bigr)\bigr). $$
(3.49)
Setting \(n=s\) in inequality (3.49) and summing with respect to s from α to \(n-1\), we get
$$\varphi^{-1}\bigl(z(n-1)\bigr)\leq\varphi^{-1}\bigl(z( \alpha-1)\bigr)+\sum_{s=\alpha }^{n-1}f(s-\alpha) \psi\bigl(\varphi^{-1}\bigl(z(s-1)\bigr)\bigr). $$
Now by applying Lemma 2.1 to the function \(\varphi^{-1}(z(n-1))\) we have
$$\varphi^{-1}\bigl(z(n-1)\bigr)\leq G^{-1} \Biggl(G \bigl( \varphi^{-1}\bigl(z(\alpha-1)\bigr) \bigr)+\sum _{s=\alpha}^{n-1}f(s-\alpha) \Biggr),\quad n\in I_{\alpha}, $$
that is,
$$ \varphi^{-1}\bigl(z(n)\bigr)\leq G^{-1} \Biggl(G \bigl( \varphi^{-1}\bigl(z(\alpha-1)\bigr) \bigr)+\sum _{s=\alpha}^{n}f(s-\alpha) \Biggr), \quad n\in I_{\alpha-1}, $$
(3.50)
where \(G(r)=\int_{r_{0}}^{r}\frac{1}{\psi(s)}\,\mathrm{d}s\). By (3.42) we get
$$ 2z(\alpha-1)-k=k+2\sum_{s=0}^{T-\alpha}F(s,T) \varphi'\bigl(u(s+\alpha-1)\bigr)\psi \bigl(u(s+\alpha-1) \bigr)=z(T), $$
(3.51)
and then from (3.50) and (3.51) we have
$$\begin{aligned} \varphi^{-1}\bigl(2z(\alpha-1)-k\bigr) =&\varphi^{-1} \bigl(z(T)\bigr) \\ \leq& G^{-1} \Biggl(G \bigl( \varphi^{-1} \bigl(z(\alpha-1)\bigr) \bigr)+\sum_{s=\alpha}^{T}f(s- \alpha) \Biggr), \end{aligned}$$
that is,
$$ G \bigl(\varphi^{-1}\bigl(2z(\alpha-1)-k\bigr) \bigr)-G \bigl( \varphi^{-1}\bigl(z(\alpha -1)\bigr) \bigr)\leq\sum _{s=\alpha}^{T}f(s-\alpha). $$
(3.52)
Since \(\Omega(t)=G(\varphi^{-1}(2t-k))-G(\varphi^{-1}(t))\) is increasing for \(t\geq k\) and Ω has an inverse function \(\Omega^{-1}\), from (3.52) we get
$$ z(\alpha-1)\leq\Omega^{-1} \Biggl(\sum_{s=\alpha}^{T}f(s- \alpha) \Biggr). $$
(3.53)
Substituting (3.53) into (3.50) we have
$$ \varphi^{-1}\bigl(z(n)\bigr)\leq G^{-1} \Biggl\{ G \Biggl[ \varphi^{-1} \Biggl(\Omega ^{-1} \Biggl(\sum _{s=\alpha}^{T}f(s-\alpha) \Biggr) \Biggr) \Biggr]+\sum _{s=\alpha }^{n}f(s-\alpha) \Biggr\} ,\quad n\in I_{\alpha-1}. $$
(3.54)
Combining (3.44) with (3.54), we obtain the desired inequality (3.40). If \(k=0\), then we carry out the above procedure with \(\varepsilon>0\) instead of k and subsequently let \(\varepsilon\rightarrow0\). This completes the proof. □
For the particular case \(\varphi(u)=u^{p}\) (\(p\geq1\) is a constant), Theorem 3.3 gives the following discrete fractional sum inequality.
Corollary 3.2
Let α, u, k, g, h, f, \(\psi_{1}\), \(\psi_{2}\), ψ, and G be defined as in Theorem  3.3, and \(p\geq1\) be a constant. If u satisfies
$$\begin{aligned} u^{p}(n) \leq& k+\Delta_{0}^{-\alpha} \bigl[pg(n)u^{p-1}(n+\alpha-1)\psi_{1}\bigl(u(n+\alpha-1)\bigr) \bigr] \\ &{}+\frac{p}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}h(s)u^{p-1}(s+ \alpha-1)\psi_{2}\bigl(u(s+\alpha-1)\bigr), \\ & n\in I_{\alpha-1}, \end{aligned}$$
and \(\Omega(t)=G((2t-k)^{\frac{1}{p}})-G(t^{\frac{1}{p}})\) is increasing for \(t\geq k\), then
$$u(n)\leq G^{-1} \Biggl\{ G \Biggl[ \Biggl(\Omega^{-1} \Biggl( \sum_{s=\alpha }^{T}f(s-\alpha) \Biggr) \Biggr)^{\frac{1}{p}} \Biggr]+\sum_{s=\alpha }^{n}f(s- \alpha) \Biggr\} ,\quad n\in I_{\alpha-1}, $$
where \(G^{-1}\) and \(\Omega^{-1}\) are inverse functions of G and Ω, respectively.

4 Applications

In this section, we apply our results to study the boundedness and uniqueness of the solutions of Volterra-Fredholm fractional sum-difference equations of the form
$$\begin{aligned} u^{p}(n) =& k+\Delta_{0}^{-\alpha} \bigl[F\bigl(n,u(n+\alpha -1)\bigr) \bigr] \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}G \bigl(s,u(s+\alpha-1)\bigr),\quad n\in I_{\alpha-1}, \end{aligned}$$
(4.1)
where \(0<\alpha<1\) and \(p>0\) are constants, u is an unknown function defined on \(\mathbf{N}_{\alpha-1}\), and \(F, G:\mathbf{N}_{0}\times\mathbf {R}\rightarrow\mathbf{R}\) are functions.
The following theorem gives the bound on the solution of Eq. (4.1).
Theorem 4.1
For Eq. (4.1), assume that there exist functions \(f, g:\mathbf {N}_{0}\rightarrow\mathbf{R}_{+}\) and a constant q satisfying \(p>q>0\) such that
$$ \bigl\vert F(n,u)\bigr\vert \leq f(n)\vert u\vert ^{q}, \qquad \bigl\vert G(n,u)\bigr\vert \leq g(n)\vert u\vert ^{p} \quad \textit{for any } n\in \mathbf{N}_{0}, u\in\mathbf{R}, $$
(4.2)
and
$$\lambda=2^{\frac{q}{p-q}}\sum_{s=0}^{T-\alpha} \frac{1}{\Gamma(\alpha )}(T-s-1)^{(\alpha-1)}g(s)< 1. $$
If u is any solution of Eq. (4.1), then
$$ u(n)\leq \Biggl[A^{\frac{p-q}{p}}(T)+\frac{p-q}{p}\sum _{s=\alpha }^{n}f(s-\alpha) \Biggr]^{\frac{1}{p-q}},\quad n \in I_{\alpha-1}, $$
(4.3)
where \(A(T)\) is as in Theorem  3.1.
Proof
From (4.1) and (4.2) we get
$$\begin{aligned} \bigl\vert u(n)\bigr\vert ^{p} \leq&\vert k\vert +\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{n-\alpha}(n-s-1)^{(\alpha-1)} \bigl\vert F\bigl(s,u(s+\alpha-1)\bigr)\bigr\vert \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)} \bigl\vert G\bigl(s,u(s+\alpha-1)\bigr)\bigr\vert \\ \leq&\vert k\vert +\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{n-\alpha}(n-s-1)^{(\alpha -1)}f(s) \bigl\vert u(s+\alpha-1)\bigr\vert ^{q} \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}g(s) \bigl\vert u(s+\alpha-1)\bigr\vert ^{p}. \end{aligned}$$
(4.4)
Now, a suitable application of the inequality given in Theorem 3.1 to (4.4) yields the desired result. This completes the proof. □
Secondly, we consider the Volterra-Fredholm fractional sum-difference equations of the form
$$\begin{aligned} u(n) =& k+\Delta_{0}^{-\alpha} \bigl[F\bigl(n,u(n+ \alpha-1)\bigr) \bigr] \\ &{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}F \bigl(s,u(s+\alpha-1)\bigr),\quad n\in I_{\alpha-1}. \end{aligned}$$
(4.5)
The next result deals with the uniqueness of solutions of Eq. (4.5).
Theorem 4.2
For Eq. (4.5), assume that there exists a function \(f:\mathbf {N}_{0}\rightarrow\mathbf{R}_{+}\) satisfying \(\exp (\sum_{s=\alpha }^{T}f(s-\alpha) )<2\) and
$$ \bigl\vert F(n,u)-F(n,v)\bigr\vert \leq f(n)\vert u-v\vert \quad \textit{for any } n\in \mathbf{N}_{0}, u, v\in\mathbf{R}. $$
(4.6)
Then Eq. (4.5) has at most one solution.
Proof
Suppose that Eq. (4.5) has two solutions \(u_{1}(n)\) and \(u_{2}(n)\). Then we have
$$\begin{aligned}& u_{1}(n) = k+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{n-\alpha}(n-s-1)^{(\alpha-1)}F \bigl(s,u_{1}(s+\alpha-1)\bigr) \\& \hphantom{u_{1}(n) ={}}{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}F \bigl(s,u_{1}(s+\alpha-1)\bigr), \\& u_{2}(n) = k+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{n-\alpha}(n-s-1)^{(\alpha-1)}F \bigl(s,u_{2}(s+\alpha-1)\bigr) \\& \hphantom{u_{2}(n) ={}}{}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}F \bigl(s,u_{2}(s+\alpha-1)\bigr). \end{aligned}$$
Furthermore,
$$\begin{aligned}& u_{1}(n)-u_{2}(n) \\& \quad = \frac{1}{\Gamma(\alpha)}\sum_{s=0}^{n-\alpha}(n-s-1)^{(\alpha-1)} \bigl[F\bigl(s,u_{1}(s+\alpha-1)\bigr)-F\bigl(s,u_{2}(s+ \alpha-1)\bigr) \bigr] \\& \qquad {}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha-1)} \bigl[F\bigl(s,u_{(}s+\alpha-1)\bigr)-F\bigl(s,u_{2}(s+\alpha-1)\bigr) \bigr]. \end{aligned}$$
From (4.6) we have
$$\begin{aligned}& \bigl\vert u_{1}(n)-u_{2}(n)\bigr\vert \\& \quad \leq \frac{1}{\Gamma(\alpha)}\sum_{s=0}^{n-\alpha}(n-s-1)^{(\alpha -1)}f(s) \bigl\vert u_{1}(s+\alpha-1)-u_{2}(s+\alpha-1)\bigr\vert \\& \qquad {}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}f(s) \bigl\vert u_{1}(s+\alpha-1)-u_{2}(s+\alpha-1)\bigr\vert \\& \quad = \Delta_{0}^{-\alpha} \bigl[f(n)\bigl\vert u_{1}(n+\alpha-1)-u_{2}(n+\alpha-1)\bigr\vert \bigr] \\& \qquad {}+\frac{1}{\Gamma(\alpha)}\sum_{s=0}^{T-\alpha}(T-s-1)^{(\alpha -1)}f(s) \bigl\vert u_{1}(s+\alpha-1)-u_{2}(s+\alpha-1)\bigr\vert . \end{aligned}$$
(4.7)
With respect to the function \(|u_{1}(n)-u_{2}(n)|\), by a suitable application of Corollary 3.1 to (4.7) we can deduce that \(|u_{1}(n)-u_{2}(n)|\leq0\), which implies \(u_{1}(n)\equiv u_{2}(n)\). The proof is complete. □

Acknowledgements

The authors thank the reviewers for their helpful and valuable suggestions and comments on this paper. This research was supported by the National Natural Science Foundation of China (No. 11671227) and the Science and Technology Project of High Schools of Shandong Province (No. J14LI09) (China).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Pachpatte, BG: Inequalities for Finite Difference Equations. Dekker, New York (2002) MATH Pachpatte, BG: Inequalities for Finite Difference Equations. Dekker, New York (2002) MATH
2.
Zurück zum Zitat Agarwal, RP, Deng, SF, Zhang, WN: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599-612 (2005) MathSciNetMATH Agarwal, RP, Deng, SF, Zhang, WN: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599-612 (2005) MathSciNetMATH
5.
Zurück zum Zitat Meng, FW, Ji, DH: On some new nonlinear discrete inequalities and their applications. J. Comput. Appl. Math. 208, 425-433 (2007) MathSciNetCrossRefMATH Meng, FW, Ji, DH: On some new nonlinear discrete inequalities and their applications. J. Comput. Appl. Math. 208, 425-433 (2007) MathSciNetCrossRefMATH
6.
Zurück zum Zitat Meng, FW, Shao, J: Some new Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444-451 (2013) MathSciNetMATH Meng, FW, Shao, J: Some new Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444-451 (2013) MathSciNetMATH
7.
Zurück zum Zitat Ma, QH: Some new nonlinear Volterra-Fredholm type discrete inequalities and their applications. J. Comput. Appl. Math. 216, 451-466 (2008) MathSciNetCrossRefMATH Ma, QH: Some new nonlinear Volterra-Fredholm type discrete inequalities and their applications. J. Comput. Appl. Math. 216, 451-466 (2008) MathSciNetCrossRefMATH
8.
Zurück zum Zitat Cheung, WS: Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal. TMA 64, 2112-2128 (2006) MathSciNetCrossRefMATH Cheung, WS: Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal. TMA 64, 2112-2128 (2006) MathSciNetCrossRefMATH
9.
Zurück zum Zitat Zheng, B, Feng, QH, Meng, FW, Zhang, YM: Some new Gronwall-Bellman type nonlinear dynamic inequalities containing integration on infinite intervals on time scales. J. Inequal. Appl. 2012, 201 (2012) MathSciNetCrossRefMATH Zheng, B, Feng, QH, Meng, FW, Zhang, YM: Some new Gronwall-Bellman type nonlinear dynamic inequalities containing integration on infinite intervals on time scales. J. Inequal. Appl. 2012, 201 (2012) MathSciNetCrossRefMATH
10.
Zurück zum Zitat Meng, FW, Li, WN: On some new nonlinear discrete inequalities and their applications. J. Comput. Appl. Math. 158, 407-417 (2003) MathSciNetCrossRefMATH Meng, FW, Li, WN: On some new nonlinear discrete inequalities and their applications. J. Comput. Appl. Math. 158, 407-417 (2003) MathSciNetCrossRefMATH
11.
Zurück zum Zitat Wang, WS: Some retarded nonlinear integral inequalities and their applications in retarded differential equations. J. Inequal. Appl. 2012, 75 (2012) MathSciNetCrossRefMATH Wang, WS: Some retarded nonlinear integral inequalities and their applications in retarded differential equations. J. Inequal. Appl. 2012, 75 (2012) MathSciNetCrossRefMATH
12.
Zurück zum Zitat Liu, HD, Meng, FW: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015) MathSciNetCrossRefMATH Liu, HD, Meng, FW: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015) MathSciNetCrossRefMATH
13.
Zurück zum Zitat Saker, SH: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633-645 (2011) MathSciNetMATH Saker, SH: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633-645 (2011) MathSciNetMATH
14.
Zurück zum Zitat Atici, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2(2), 165-176 (2007) MathSciNet Atici, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2(2), 165-176 (2007) MathSciNet
15.
18.
19.
Zurück zum Zitat Feng, Q: Some new generalized Gronwall-Bellman type discrete fractional inequalities. Appl. Math. Comput. 259, 403-411 (2015) MathSciNet Feng, Q: Some new generalized Gronwall-Bellman type discrete fractional inequalities. Appl. Math. Comput. 259, 403-411 (2015) MathSciNet
20.
Zurück zum Zitat Zheng, B: Some new discrete fractional inequalities and their applications in fractional difference equations. J. Math. Inequal. 9(3), 823-839 (2015) MathSciNetCrossRefMATH Zheng, B: Some new discrete fractional inequalities and their applications in fractional difference equations. J. Math. Inequal. 9(3), 823-839 (2015) MathSciNetCrossRefMATH
22.
Zurück zum Zitat Abdeljawad, T: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574-582 (2011) MathSciNetMATH Abdeljawad, T: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574-582 (2011) MathSciNetMATH
25.
Zurück zum Zitat Podlubny, I: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359-386 (2000) MathSciNetMATH Podlubny, I: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359-386 (2000) MathSciNetMATH
26.
Zurück zum Zitat Ferreira, R, Torres, D: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5(1), 110-121 (2011) MathSciNetCrossRefMATH Ferreira, R, Torres, D: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5(1), 110-121 (2011) MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Goodrich, CS: Continuity of solutions to discrete fractional initial value problems. Comput. Math. Appl. 59, 3489-3499 (2010) MathSciNetCrossRefMATH Goodrich, CS: Continuity of solutions to discrete fractional initial value problems. Comput. Math. Appl. 59, 3489-3499 (2010) MathSciNetCrossRefMATH
29.
Zurück zum Zitat Goodrich, C: Solutions to a discrete right-focal fractional boundary value problem. Int. J. Differ. Equ. 5(2), 195-216 (2010) MathSciNet Goodrich, C: Solutions to a discrete right-focal fractional boundary value problem. Int. J. Differ. Equ. 5(2), 195-216 (2010) MathSciNet
30.
Zurück zum Zitat Miller, KS, Ross, B: Fractional difference calculus. In: Univalent Functions, Fractional Calculus, and Their Applications (Koriyama, 1988). Ellis Horwood Ser. Math. Appl., pp. 139-152. Horwood, Chichester (1989) Miller, KS, Ross, B: Fractional difference calculus. In: Univalent Functions, Fractional Calculus, and Their Applications (Koriyama, 1988). Ellis Horwood Ser. Math. Appl., pp. 139-152. Horwood, Chichester (1989)
31.
Zurück zum Zitat Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATH Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATH
Metadaten
Titel
Some new generalized Volterra-Fredholm type discrete fractional sum inequalities and their applications
verfasst von
Haidong Liu
Fanwei Meng
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1152-7

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe