Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2017

Open Access 01.12.2017 | Research

A class of retarded Volterra-Fredholm type integral inequalities on time scales and their applications

verfasst von: Haidong Liu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2017

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In this paper, we study some new retarded Volterra-Fredholm type integral inequalities on time scales, which provide explicit bounds on unknown functions. These inequalities generalize and extend some known inequalities and can be used as tools in the qualitative theory of certain classes of retarded dynamic equations on time scales. Some applications are also presented to illustrate the usefulness of our results.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In 1988, Hilger introduced the theory of time scales in order to unify and extend the difference and differential calculus in a consistent way (see [1]). Since then, more and more researchers are getting involved in this fast-growing field, for example, [210] and the references therein. Among various aspects of the theory, we notice that dynamic inequalities on time scales is an object of long standing interest [1129]. However, to the best of our knowledge, there are few results dealing with Volterra-Fredholm type integral inequalities on time scales. Recent results in this direction include the works of Gu and Meng [16] and Meng and Shao [20].
The purpose of this paper is to investigate some new retarded Volterra-Fredholm type integral inequalities on time scales, which not only generalize and extend the results of [16, 20] and some known integral inequalities but also provide a handy and effective tool for the study of qualitative properties of solutions of some complicated Volterra-Fredholm type dynamic equations.
The paper is organized as follows. In Section 2, some necessary definition and lemmas are presented. In Section 3, some new retarded Volterra-Fredholm type integral inequalities on time scales are investigated. Finally, Section 4 is devoted to applying our results to a retarded Volterra-Fredholm type dynamic integral equation on time scales.

2 Preliminaries

Throughout this paper, knowledge and understanding of time scales and time scale notation is assumed. For an excellent introduction to the calculus on time scales, we refer the reader to [30] and [31].
List of abbreviations. In what follows, we always assume that \(\mathbb{R}\) denotes the set of real numbers, \(\mathbb{R}_{+}=[0,\infty)\), \(\mathbb{Z}\) denotes the set of integers, \(\mathbb{T}\) is an arbitrary time scale (nonempty closed subset of \(\mathbb{R}\)), \(\mathcal{R}\) denotes the set of all regressive and rd-continuous functions, \(\mathcal{R}^{+}=\{p\in\mathcal{R}:1+\mu (t)p(t)>0\mbox{ for all }t\in\mathbb{T}\}\) and \(I=[t_{0},T]\cap\mathbb{T}^{\kappa}\), where \(t_{0}\in\mathbb{T}^{\kappa}\), \(T\in\mathbb{T}^{\kappa}\), \(T>t_{0}\). The set \(\mathbb{T}^{\kappa}\) is defined as follows: If \(\mathbb{T}\) has a maximum m and m is left-scattered, then \(\mathbb{T}^{\kappa}=\mathbb{T}-\{m\}\). Otherwise \(\mathbb{T}^{\kappa}=\mathbb{T}\). The graininess function \(\mu: \mathbb {T}\rightarrow[0,\infty)\) is defined by \(\mu(t):=\sigma(t)-t\), the forward jump operator \(\sigma: \mathbb{T}\rightarrow\mathbb{T}\) by \(\sigma(t):=\inf\{s\in\mathbb{T}: s>t\}\), and the “circle plus” addition ⊕ is defined by \((p\oplus q)(t):=p(t)+q(t)+\mu(t)p(t)q(t)\) for all \(t\in\mathbb {T}^{\kappa}\).
The following lemmas and definition are useful in the proof of the main results of this paper.
Lemma 2.1
([30, Theorem 1.16])
Assume that \(f:\mathbb {T}\rightarrow\mathbb{R}\) is a function and let \(t\in\mathbb{T}\). If f is differentiable at t, then
$$f\bigl(\sigma(t)\bigr)=f(t)+\mu(t)f^{\Delta}(t). $$
Lemma 2.2
([30, Theorem 1.98])
Assume that \(\nu :\mathbb{T}\rightarrow\mathbb{R}\) is a strictly increasing function and \(\widetilde{\mathbb{T}}:=\nu(\mathbb{T})\) is a time scale. If \(f: \mathbb{T}\rightarrow\mathbb{R}\) is an rd-continuous function and ν is differentiable with rd-continuous derivative, then for \(a, b\in \mathbb{T}\),
$$\int_{a}^{b}f(t)\nu^{\Delta}(t)\Delta t= \int_{\nu(a)}^{\nu(b)}\bigl(f\circ\nu ^{-1}\bigr) (s) \widetilde{\Delta} s. $$
Lemma 2.3
Let \(\alpha:I\rightarrow I\) be a continuous and strictly increasing function such that \(\alpha(t)\leq t\), and \(\alpha^{\Delta}\) is rd-continuous. Assume that \(f: I\rightarrow\mathbb{R}\) is an rd-continuous function, then
$$ g(t)= \int_{\alpha(t_{0})}^{\alpha(t)}f(s)\Delta s,\quad t\in I, $$
(2.1)
implies
$$ g^{\Delta}(t)=f\bigl(\alpha(t)\bigr)\alpha^{\Delta}(t),\quad t\in I. $$
(2.2)
Proof
From (2.1), we get, for any \(t\in I\),
$$g(t)= \int_{\alpha(t_{0})}^{\alpha(t)}f(s)\Delta s= \int_{\alpha (t_{0})}^{\alpha(t)}f\bigl(\alpha\bigl(\alpha^{-1}(s) \bigr)\bigr)\Delta s. $$
By Lemma 2.2, we obtain
$$g(t)= \int_{t_{0}}^{t}f\bigl(\alpha(s)\bigr) \alpha^{\Delta}(s)\Delta s, \quad t\in I, $$
so we get
$$g^{\Delta}(t)=f\bigl(\alpha(t)\bigr)\alpha^{\Delta}(t). $$
 □
Lemma 2.4
([30, Theorem 1.117])
Suppose that, for each \(\varepsilon>0\), there exists a neighborhood U of t, independent of \(\tau\in[t_{0},\sigma(t)]\), such that
$$ \bigl\vert w\bigl(\sigma(t),\tau\bigr)-w(s,\tau) -w^{\Delta}_{t}(t, \tau) \bigl(\sigma (t)-s\bigr) \bigr\vert \leq\varepsilon \bigl\vert \sigma(t)-s \bigr\vert ,\quad s\in U, $$
(2.3)
where \(w: \mathbb{T}\times\mathbb{T}^{\kappa}\rightarrow\mathbb{R}_{+}\) is continuous at \((t,t)\), \(t\in\mathbb{T}^{\kappa}\) with \(t>t_{0}\), and \(w^{\Delta}_{t}(t,\cdot)\) are rd-continuous on \([t_{0},\sigma(t)]\). Then
$$g(t):= \int_{t_{0}}^{t}w(t,\tau)\Delta\tau $$
implies
$$ g^{\Delta}(t)= \int_{t_{0}}^{t}w^{\Delta}_{t}(t,\tau) \Delta\tau+w\bigl(\sigma (t),t\bigr),\quad t\in\mathbb{T}^{\kappa}. $$
(2.4)
Lemma 2.5
([30, Theorem 6.1])
Suppose that y and f are rd-continuous functions and \(p\in\mathcal {R}^{+}\). Then
$$y^{\Delta}(t)\leq p(t)y(t)+f(t) \quad \textit{for all } t \in\mathbb{T} $$
implies
$$y(t)\leq y(t_{0})e_{p}(t,t_{0})+ \int_{t_{0}}^{t}e_{p}\bigl(t,\sigma(\tau) \bigr)f(\tau)\Delta \tau\quad \textit{for all } t \in\mathbb{T}. $$
Definition 2.1
A function \(x:I\rightarrow I\) is said to belong to the class ϒ if
(1)
x is continuous and strictly increasing, and
 
(2)
\(x(t)\leq t\) and \(x^{\Delta}\) is rd-continuous.
 

3 Main results

Theorem 3.1
Assume that \(\alpha\in\Upsilon\) and \(u, a, b, f_{1}, f_{2}, g: I\rightarrow\mathbb{R}_{+}\) are rd-continuous functions, a is nondecreasing, \(\lambda\geq0\) is a constant, \(\alpha^{\Delta}(t)\geq0\), \(b^{\Delta}(t)\geq0\), \(\mu(t)A(t)<1\). Suppose that u satisfies
$$\begin{aligned} u(t) \leq& a(t)+b(t) \int_{\alpha(t_{0})}^{\alpha (t)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ &{} +\lambda b(T) \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int _{\alpha(t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
(3.1)
If
$$ \beta:=e_{B \oplus C}(T,t_{0})< 1+\frac{1}{\lambda}, $$
(3.2)
then
$$ u(t) \leq\frac{a(T)}{\lambda+1-\beta\lambda}e_{B \oplus C}(t,t_{0}), \quad t\in I, $$
(3.3)
where we use the convention that \(\frac{1}{0}=+\infty\),
$$\begin{aligned}& A(t) := b^{\Delta}(t) \int_{\alpha(t_{0})}^{\alpha(\sigma (t))}\biggl[f_{1}(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)\Delta\tau\biggr] \Delta s, \qquad B(t):=\frac{A(t)}{1-\mu(t)A(t)}, \end{aligned}$$
(3.4)
$$\begin{aligned}& C(t) := b(t)\biggl[f_{1}\bigl(\alpha(t)\bigr)+f_{2}\bigl( \alpha(t)\bigr) \int_{\alpha(t_{0})}^{\alpha (t)}g(\tau)\Delta\tau\biggr] \alpha^{\Delta}(t). \end{aligned}$$
(3.5)
Proof
Denote
$$\begin{aligned} z(t) :=& a(T)+b(t) \int_{\alpha(t_{0})}^{\alpha (t)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ &{}+\lambda b(T) \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int _{\alpha(t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
(3.6)
Then z is nondecreasing on I,
$$ u(t)\leq z(t),\quad t\in I, $$
(3.7)
and
$$ z(t_{0})=a(T)+\lambda b(T) \int_{\alpha(t_{0})}^{\alpha (T)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s. $$
(3.8)
From Lemma 2.3 and (3.4)-(3.7), we have
$$\begin{aligned} z^{\Delta}(t) =&b^{\Delta}(t) \int_{\alpha(t_{0})}^{\alpha (\sigma(t))}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)u(\tau )\Delta\tau\biggr] \Delta s \\ &{}+b(t)\biggl[f_{1}\bigl(\alpha(t)\bigr)u\bigl(\alpha(t) \bigr)+f_{2}\bigl(\alpha(t)\bigr) \int_{\alpha (t_{0})}^{\alpha(t)}g(\tau)u(\tau)\Delta\tau\biggr] \alpha^{\Delta}(t) \\ \leq&b^{\Delta}(t) \int_{\alpha(t_{0})}^{\alpha(\sigma (t))}\biggl[f_{1}(s)z(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)z(\tau)\Delta\tau\biggr] \Delta s \\ &{}+b(t)\biggl[f_{1}\bigl(\alpha(t)\bigr)z\bigl(\alpha(t) \bigr)+f_{2}\bigl(\alpha(t)\bigr) \int_{\alpha (t_{0})}^{\alpha(t)}g(\tau)z(\tau)\Delta\tau\biggr] \alpha^{\Delta}(t) \\ \leq&z\bigl(\sigma(t)\bigr)b^{\Delta}(t) \int_{\alpha(t_{0})}^{\alpha(\sigma (t))}\biggl[f_{1}(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)\Delta\tau\biggr] \Delta s \\ &{}+z(t)b(t)\biggl[f_{1}\bigl(\alpha(t)\bigr)+f_{2}\bigl( \alpha(t)\bigr) \int_{\alpha(t_{0})}^{\alpha (t)}g(\tau)\Delta\tau\biggr] \alpha^{\Delta}(t) \\ =&A(t)z\bigl(\sigma(t)\bigr)+C(t)z(t), \quad t\in I. \end{aligned}$$
(3.9)
Note that from (3.4) we get
$$A(t)=\frac{B(t)}{1+\mu(t)B(t)}, $$
and from (3.9) we have
$$\begin{aligned} z^{\Delta}(t) &\leq\frac{B(t)}{1+\mu(t)B(t)}z\bigl(\sigma(t)\bigr)+C(t)z(t) \\ &=\frac{B(t)}{1+\mu(t)B(t)}\bigl[z(t)+\mu(t)z^{\Delta}(t)\bigr]+C(t)z(t), \end{aligned} $$
which yields
$$\frac{1}{1+\mu(t)B(t)}z^{\Delta}(t)\leq\biggl[\frac{B(t)}{1+\mu(t)B(t)}+C(t) \biggr]z(t), $$
i.e.,
$$\begin{aligned} z^{\Delta}(t) \leq&\bigl[B(t)+\bigl(1+\mu(t)B(t)\bigr)C(t)\bigr]z(t) \\ =&(B\oplus C) (t)z(t). \end{aligned}$$
(3.10)
Note that z is rd-continuous and \(B\oplus C\in\mathcal{R}^{+}\), from Lemma 2.5 and (3.10), we obtain
$$ z(t)\leq z(t_{0})e_{B \oplus C}(t,t_{0}), \quad t\in I. $$
(3.11)
From (3.6) and (3.8), we get
$$\bigl(z(t_{0})-a(T)\bigr)\frac{\lambda+1}{\lambda}+a(T)=z(T), $$
i.e.,
$$ \frac{\lambda+1}{\lambda}z(t_{0})-\frac{1}{\lambda}a(T)=z(T). $$
(3.12)
From (3.2), (3.11) and (3.12), we have
$$ \frac{\lambda+1}{\lambda}z(t_{0})-\frac{1}{\lambda}a(T)=z(T)\leq z(t_{0})e_{B \oplus C}(T,t_{0})=z(t_{0}) \beta. $$
(3.13)
In view of (3.2) and (3.13), we get
$$ z(t_{0})\leq\frac{a(T)}{\lambda+1-\beta\lambda}. $$
(3.14)
Substituting (3.14) into (3.11), we obtain
$$z(t)\leq\frac{a(T)}{\lambda+1-\beta\lambda}e_{B \oplus C}(t,t_{0}),\quad t\in I. $$
Noting \(u(t)\leq z(t)\), we get the desired inequality (3.3). This completes the proof. □
If we let \(\lambda=\frac{1}{b(T)}\) in Theorem 3.1, then we obtain the following corollary.
Corollary 3.1
Assume that α, u, a, b, \(f_{1}\), \(f_{2}\), g, A, B, C are the same as in Theorem  3.1 and \(b(T)\neq0\). Suppose that u satisfies
$$\begin{aligned} u(t) \leq& a(t)+b(t) \int_{\alpha(t_{0})}^{\alpha (t)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ & {}+ \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha (t_{0})}^{s}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
If
$$\beta:=e_{B \oplus C}(T,t_{0})< 1+b(T), $$
then
$$u(t) \leq\frac{a(T)b(T)}{1+b(T)-\beta}e_{B \oplus C}(t,t_{0}), \quad t\in I. $$
Remark 3.1
If we take \(a(t)\equiv u_{0}\), \(b(t)\equiv1\), \(\alpha(t)=t\) and \(\lambda =1\), then Theorem 3.1 reduces to [16, Theorem 3]. If we take \(a(t)\equiv u_{0}\), \(b(t)\equiv1\), \(\alpha(t)=t\), \(f_{1}(t)=f_{2}(t)\) and \(\lambda=1\), then Theorem 3.1 reduces to [20, Theorem 2.3].
Theorem 3.2
Assume that α, u, a, b, λ are the same as in Theorem  3.1 and \(\mu(t)\widetilde{A}(t)<1\). Let \(v(t,s)\) and \(w(t,s)\) be defined as in Lemma  2.3 such that \(v^{\Delta}_{t}(t,s)\geq0\), \(w^{\Delta}_{t}(t,s)\geq0\) for \(t\geq s\) and (2.3) holds. Suppose that u satisfies
$$\begin{aligned} u(t) \leq& a(t)+b(t) \int _{t_{0}}^{t}\biggl[v(t,s)u(s)+w(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau)u(\tau )\Delta\tau\biggr] \Delta s \\ &{}+\lambda b(T) \int_{t_{0}}^{T}\biggl[v(T,s)u(s)+w(T,s) \int_{\alpha (t_{0})}^{\alpha(s)}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
(3.15)
If
$$ \beta:=e_{\widetilde{B} \oplus\widetilde{C}}(T,t_{0})< 1+\frac{1}{\lambda }, $$
(3.16)
then
$$ u(t) \leq\frac{a(T)}{\lambda+1-\beta\lambda}e_{\widetilde{B} \oplus \widetilde{C}}(t,t_{0}),\quad t\in I, $$
(3.17)
where
$$\begin{aligned}& \begin{gathered} \widetilde{A}(t):=b^{\Delta}(t) \int_{t_{0}}^{\sigma(t)}\biggl[v\bigl(\sigma (t),s\bigr)+w \bigl(\sigma(t),s\bigr) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau)\Delta\tau\biggr] \Delta s, \\ \widetilde{B}(t):=\frac{\widetilde{A}(t)}{1-\mu (t)\widetilde{A}(t)},\end{gathered} \end{aligned}$$
(3.18)
$$\begin{aligned}& \begin{aligned} \widetilde{C}(t)&:=b(t)\biggl[v\bigl(\sigma(t),t\bigr)+w\bigl(\sigma(t),t\bigr) \int_{\alpha (t_{0})}^{\alpha(t)}g(\tau)\Delta\tau\\ &\quad {}+ \int_{t_{0}}^{t} \biggl[v^{\Delta}_{t}(t,s)+w^{\Delta}_{t}(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau )\Delta\tau\biggr]\Delta s \biggr].\end{aligned} \end{aligned}$$
(3.19)
Proof
Denote
$$\begin{aligned} z(t) :=& a(T)+b(t) \int _{t_{0}}^{t}\biggl[v(t,s)u(s)+w(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau)u(\tau )\Delta\tau\biggr] \Delta s \\ &{}+\lambda b(T) \int_{t_{0}}^{T}\biggl[v(t,T)u(s)+w(T,s) \int_{\alpha (t_{0})}^{\alpha(s)}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
(3.20)
Then z is nondecreasing on I,
$$ u(t)\leq z(t),\quad t\in I, $$
(3.21)
and
$$ z(t_{0})=a(T)+\lambda b(T) \int_{t_{0}}^{T}\biggl[v(T,s)u(s)+w(T,s) \int_{\alpha (t_{0})}^{\alpha(s)}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s. $$
(3.22)
From Lemma 2.3 and (3.15)-(3.21), we have
$$\begin{aligned} z^{\Delta}(t) =&b^{\Delta}(t) \int_{t_{0}}^{\sigma (t)}\biggl[v\bigl(\sigma(t),s\bigr)u(s)+w \bigl(\sigma(t),s\bigr) \int_{\alpha(t_{0})}^{\alpha (s)}g(\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ &{}+b(t)\biggl[v\bigl(\sigma(t),t\bigr)u(t)+w\bigl(\sigma(t),t\bigr) \int_{\alpha(t_{0})}^{\alpha (t)}g(\tau)u(\tau)\Delta\tau \\ &{}+ \int_{t_{0}}^{t} \biggl[v^{\Delta}_{t}(t,s)u(s)+w^{\Delta}_{t}(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau )u(\tau)\Delta\tau\biggr]\Delta s\biggr] \\ \leq&b^{\Delta}(t) \int_{t_{0}}^{\sigma(t)}\biggl[v\bigl(\sigma(t),s\bigr)z(s)+w \bigl(\sigma (t),s\bigr) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau)z(\tau)\Delta\tau\biggr] \Delta s \\ &{}+b(t)\biggl[v\bigl(\sigma(t),t\bigr)z(t)+w\bigl(\sigma(t),t\bigr) \int_{\alpha(t_{0})}^{\alpha (t)}g(\tau)z(\tau)\Delta\tau \\ &{}+ \int_{t_{0}}^{t} \biggl[v^{\Delta}_{t}(t,s)z(s)+w^{\Delta}_{t}(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau )z(\tau)\Delta\tau\biggr]\Delta s\biggr] \\ \leq&z\bigl(\sigma(t)\bigr)b^{\Delta}(t) \int_{t_{0}}^{\sigma(t)}\biggl[v\bigl(\sigma (t),s\bigr)+w \bigl(\sigma(t),s\bigr) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau)\Delta\tau\biggr] \Delta s \\ &{}+z(t)b(t)\biggl[v\bigl(\sigma(t),t\bigr)+w\bigl(\sigma(t),t\bigr) \int_{\alpha(t_{0})}^{\alpha (t)}g(\tau)\Delta\tau \\ &{}+ \int_{t_{0}}^{t} \biggl[v^{\Delta}_{t}(t,s)+w^{\Delta}_{t}(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau )\Delta\tau\biggr]\Delta s \biggr] \\ =&\widetilde{A}(t)z\bigl(\sigma(t)\bigr)+\widetilde{C}(t)z(t),\quad t\in I. \end{aligned}$$
(3.23)
Similar to the proof of Theorem 3.1, we get (3.17). This completes the proof. □
If we let \(\lambda=\frac{1}{b(T)}\) in Theorem 3.2, then we obtain the following corollary.
Corollary 3.2
Assume that u, a, b, v, w, Ã, , are the same as in Theorem  3.2 and \(b(T)\neq0\). Suppose that u satisfies
$$\begin{aligned} u(t) \leq& a(t)+b(t) \int _{t_{0}}^{t}\biggl[v(t,s)u(s)+w(t,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau)u(\tau )\Delta\tau\biggr] \Delta s \\ &{}+ \int_{t_{0}}^{T}\biggl[v(T,s)u(s)+w(T,s) \int_{\alpha(t_{0})}^{\alpha(s)}g(\tau )u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
If
$$\beta:=e_{\widetilde{B} \oplus\widetilde{C}}(T,t_{0})< 1+b(T), $$
then
$$u(t) \leq\frac{a(T)}{\lambda+1-\beta\lambda}e_{\widetilde{B} \oplus \widetilde{C}}(t,t_{0}),\quad t\in I. $$
Theorem 3.3
Assume that u, a, f, λ are the same as in Theorem  3.1. Let \(g(t,s)\) be defined as in Lemma  2.4 such that \(g^{\Delta}_{t}(t,s)\geq0\) for \(t\geq s\) and (2.3) holds. Suppose that u satisfies
$$\begin{aligned} u(t) \leq& a(t)+ \int_{t_{0}}^{t}f(s)\biggl[u(s)+ \int _{t_{0}}^{s}g(s,\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ &{}+\lambda \int_{t_{0}}^{T}f(s)\biggl[u(s)+ \int_{t_{0}}^{s}g(s,\tau)u(\tau)\Delta \tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
(3.24)
If
$$ \beta:= \int_{t_{0}}^{T}f(s)e_{A}(s,t_{0}) \Delta s< \frac{1}{\lambda}, $$
(3.25)
then
$$ u(t) \leq\frac{a(T)}{1-\beta\lambda}\biggl[1+ \int _{t_{0}}^{t}f(s)e_{A}(s,t_{0}) \Delta s\biggr],\quad t\in I, $$
(3.26)
where
$$ A(t):=f(t)+g\bigl(\sigma(t),t\bigr)+ \int_{t_{0}}^{t}g^{\Delta}_{t}(t,\tau) \Delta\tau . $$
(3.27)
Proof
Denote
$$\begin{aligned} z(t) :=& a(T)+ \int_{t_{0}}^{t}f(s)\biggl[u(s)+ \int _{t_{0}}^{s}g(s,\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ &{}+\lambda \int_{t_{0}}^{T}f(s)\biggl[u(s)+ \int_{t_{0}}^{s}g(s,\tau)u(\tau)\Delta \tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
(3.28)
Then z is nondecreasing on I,
$$ u(t)\leq z(t),\quad t\in I, $$
(3.29)
and
$$ z(t_{0})=a(T)+\lambda \int_{t_{0}}^{T}f(s)\biggl[u(s)+ \int_{t_{0}}^{s}g(s,\tau )u(\tau)\Delta\tau\biggr] \Delta s. $$
(3.30)
From Lemma 2.4 and (3.26)-(3.29), we get
$$\begin{aligned} z^{\Delta}(t) =&f(t)u(t)+f(t) \int_{t_{0}}^{t}g(t,\tau )u(\tau)\Delta\tau \\ \leq&f(t)\biggl[z(t)+ \int_{t_{0}}^{t}g(t,\tau)z(\tau)\Delta\tau\biggr],\quad t\in I. \end{aligned}$$
(3.31)
Let
$$ V(t)=z(t)+ \int_{t_{0}}^{t}g(t,\tau)z(\tau)\Delta\tau,\quad t\in I. $$
(3.32)
Obviously,
$$ V(t_{0})=z(t_{0}), \qquad z(t)\leq V(t),\qquad z^{\Delta}(t)\leq f(t)V(t). $$
(3.33)
From Lemma 2.4, (3.27) and (3.32), we obtain
$$\begin{aligned} V^{\Delta}(t) =&z^{\Delta}(t)+g\bigl(\sigma(t),t\bigr)z(t)+ \int _{t_{0}}^{t}g^{\Delta}_{t}(t, \tau)z(\tau)\Delta\tau \\ \leq&\biggl[f(t)+g\bigl(\sigma(t),t\bigr)+ \int_{t_{0}}^{t}g^{\Delta}_{t}(t,\tau) \Delta\tau \biggr]V(t) \\ =&A(t)V(t),\quad t\in I. \end{aligned}$$
It is easy to see that \(A\in\mathcal{R}^{+}\). Therefore, from Lemma 2.5 and the above inequality, we have
$$ V(t)\leq V(t_{0})e_{A}(t,t_{0})=z(t_{0})e_{A}(t,t_{0}), \quad t\in I. $$
(3.34)
Combining (3.33) and (3.34), we get
$$ z^{\Delta}(t)\leq f(t)z(t_{0})e_{A}(t,t_{0}). $$
(3.35)
Setting \(t=\tau\) in (3.35), integrating it from \(t_{0}\) to t, we easily obtain
$$ z(t)\leq z(t_{0})+z(t_{0}) \int_{t_{0}}^{t}f(s)e_{A}(s,t_{0}) \Delta s. $$
(3.36)
From (3.28) and (3.30), we have
$$\bigl(z(t_{0})-a(T)\bigr)\frac{\lambda+1}{\lambda}+a(T)=z(T), $$
i.e.,
$$ \frac{\lambda+1}{\lambda}z(t_{0})-\frac{1}{\lambda}a(T)=z(T). $$
(3.37)
From (3.25), (3.36) and (3.37), we have
$$\frac{\lambda+1}{\lambda}z(t_{0})-\frac{1}{\lambda}a(T)=z(T)\leq z(t_{0})+z(t_{0}) \int_{t_{0}}^{T}f(s)e_{A}(s,t_{0}) \Delta s=z(t_{0})+z(t_{0})\beta. $$
In view of (3.25), we get
$$ z(t_{0})\leq\frac{a(T)}{1-\beta\lambda}. $$
(3.38)
Substituting (3.38) into (3.36), we have
$$ z(t)\leq\frac{a(T)}{1-\beta\lambda}\biggl[1+ \int_{t_{0}}^{t}f(s)e_{A}(s,t_{0}) \Delta s\biggr]. $$
(3.39)
Noting \(u(t)\leq z(t)\), we get the desired inequality (3.26). This completes the proof. □
If we let \(\lambda=1\) in Theorem 3.3, then we obtain the following corollary.
Corollary 3.3
Assume that u, a, f, g and A are the same as in Theorem  3.3. Suppose that u satisfies
$$\begin{aligned} u(t) \leq& a(t)+ \int_{t_{0}}^{t}f(s)\biggl[u(s)+ \int _{t_{0}}^{s}g(s,\tau)u(\tau)\Delta\tau\biggr] \Delta s \\ &{}+ \int_{t_{0}}^{T}f(s)\biggl[u(s)+ \int_{t_{0}}^{s}g(s,\tau)u(\tau)\Delta\tau\biggr] \Delta s,\quad t\in I. \end{aligned}$$
If
$$\beta:= \int_{t_{0}}^{T}f(s)e_{A}(s,t_{0}) \Delta s< 1, $$
then
$$u(t) \leq\frac{a(T)}{1-\beta}\biggl[1+ \int_{t_{0}}^{t}f(s)e_{A}(s,t_{0}) \Delta s\biggr],\quad t\in I. $$
Remark 3.2
If we take \(a(t)\equiv u_{0}\), \(g(s,t)=g(t)\) and \(\lambda=0\), then Theorem 3.3 reduces to [27, Theorem 1]. If we take \(\mathbb{T}=\mathbb{R}\), \(a(t)\equiv u_{0}\) and \(\lambda=0\), then Theorem 3.3 reduces to [32, Theorem 2.1 \((a_{1})\)]. If we take \(\mathbb{T}=\mathbb{Z}\), \(a(t)\equiv u_{0}\) and \(\lambda=0\), then Theorem 3.3 reduces to [32, Theorem 2.3 \((c_{1})\)].

4 Applications

In this section, we will present some simple applications for our results.
Example 4.1
Consider the following retarded Volterra-Fredholm type dynamic integral equation on time scales:
$$ \begin{aligned}[b] u(t)&=a(t)+b(t) \int_{\alpha(t_{0})}^{\alpha (t)}F\biggl(s,u(s), \int_{\alpha(t_{0})}^{s}H\bigl(\tau,u(\tau)\bigr)\Delta\tau \biggr)\Delta s \\ &\quad {}+ \int_{\alpha(t_{0})}^{\alpha(T)}\widetilde{F}\biggl(s,u(s), \int_{\alpha (t_{0})}^{s}\widetilde{H}\bigl(\tau,u(\tau)\bigr) \Delta\tau\biggr)\Delta s,\quad t\in I, \end{aligned} $$
(4.1)
where \(u, a, b: I\rightarrow\mathbb{R}\) are rd-continuous functions, \(\vert a \vert \) is nondecreasing, \(b(T)\neq0\), \(\alpha\in \Upsilon\), \(F, \widetilde{F}:I\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}\) and \(H, \widetilde{H}:I\times\mathbb{R}\rightarrow\mathbb{R}\) are continuous functions.
The following theorem gives an estimate for the solutions of Eq. (4.1).
Theorem 4.1
Suppose that the functions \(F, H, \widetilde{F}\) and in (4.1) satisfy the conditions
$$\begin{aligned}& \bigl\vert F(t,u,v) \bigr\vert \leq f_{1}(t) \vert u \vert +f_{2}(t) \vert v \vert ,\quad t \in I, u, v\in \mathbb{R}, \end{aligned}$$
(4.2)
$$\begin{aligned}& \bigl\vert H(t,u) \bigr\vert \leq g(t) \vert u \vert ,\quad t\in I, u\in \mathbb{R}, \end{aligned}$$
(4.3)
$$\begin{aligned}& \bigl\vert \widetilde{F}(t,u,v) \bigr\vert \leq f_{1}(t) \vert u \vert +f_{2}(t) \vert v \vert ,\quad t \in I, u, v\in \mathbb{R}, \end{aligned}$$
(4.4)
$$\begin{aligned}& \bigl\vert \widetilde{H}(t,u) \bigr\vert \leq g(t) \vert u \vert ,\quad t\in I, u\in\mathbb{R}, \end{aligned}$$
(4.5)
where \(f_{1}, f_{2}, g: I\rightarrow\mathbb{R}_{+}\) are rd-continuous functions. If
$$\beta:=e_{B \oplus C}(T,t_{0})< 1+ \bigl\vert b(T) \bigr\vert , $$
then all solutions of Eq. (4.1) satisfy
$$ \bigl\vert u(t) \bigr\vert \leq\frac{ \vert a(T)b(T) \vert }{1+ \vert b(T) \vert -\beta}e_{B \oplus C}(t,t_{0}), \quad t\in I, $$
(4.6)
where \(B(t)\) and \(C(t)\) are defined as in Theorem  3.1.
Proof
By (4.1)-(4.3), we get
$$\begin{aligned} \bigl\vert u(t) \bigr\vert \leq& \bigl\vert a(t) \bigr\vert + \bigl\vert b(t) \bigr\vert \int_{\alpha(t_{0})}^{\alpha(t)} \biggl\vert F\biggl(s,u(s), \int_{\alpha(t_{0})}^{s}H\bigl(\tau,u(\tau)\bigr)\Delta\tau \biggr) \biggr\vert \Delta s \\ &{}+ \int_{\alpha(t_{0})}^{\alpha(T)} \biggl\vert \widetilde{F} \biggl(s,u(s), \int _{\alpha(t_{0})}^{s}\widetilde{H}\bigl(\tau,u(\tau)\bigr) \Delta\tau\biggr) \biggr\vert \Delta s \\ \leq& \bigl\vert a(t) \bigr\vert + \bigl\vert b(t) \bigr\vert \int _{\alpha(t_{0})}^{\alpha(t)}\biggl[f_{1}(s) \bigl\vert u(s) \bigr\vert +f_{2}(s) \int _{\alpha(t_{0})}^{s}g(\tau) \bigl\vert u(\tau) \bigr\vert \Delta\tau\biggr]\Delta s \\ &{}+ \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s) \bigl\vert u(s) \bigr\vert +f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau) \bigl\vert u(\tau) \bigr\vert \Delta\tau\biggr]\Delta s , \quad t\in I. \end{aligned}$$
Using Corollary 3.1, we obtain the desired inequality (4.4). □
The next result deals with the uniqueness of solutions of Eq. (4.1).
Theorem 4.2
Suppose that the functions F, H, and in (4.1) satisfy the conditions
$$\begin{aligned}& \bigl\vert F(t,u_{1},v_{1})-F(t,u_{2},v_{2}) \bigr\vert \leq f_{1}(t) \vert u_{1}-u_{2} \vert +f_{2}(t) \vert v_{1}-v_{2} \vert , \quad t \in I, u, v\in\mathbb{R}, \end{aligned}$$
(4.7)
$$\begin{aligned}& \bigl\vert H(t,u_{1})-H(t,u_{2}) \bigr\vert \leq g(t) \vert u_{1}-u_{2} \vert ,\quad t\in I, u_{1}, u_{2}\in\mathbb{R}, \end{aligned}$$
(4.8)
$$\begin{aligned}& \bigl\vert \widetilde{F}(t,u_{1},v_{1})- \widetilde{F}(t,u_{2},v_{2}) \bigr\vert \leq f_{1}(t) \vert u_{1}-u_{2} \vert +f_{2}(t) \vert v_{1}-v_{2} \vert ,\quad t \in I, u, v\in\mathbb{R}, \end{aligned}$$
(4.9)
$$\begin{aligned}& \bigl\vert \widetilde{H}(t,u_{1})-\widetilde{H}(t,u_{2}) \bigr\vert \leq g(t) \vert u_{1}-u_{2} \vert ,\quad t \in I, u_{1}, u_{2}\in\mathbb{R}, \end{aligned}$$
(4.10)
where \(f_{1}, f_{2}, g: I\rightarrow\mathbb{R}_{+}\) are rd-continuous functions. If
$$\beta:=e_{B \oplus C}(T,t_{0})< 1+ \bigl\vert b(T) \bigr\vert , $$
then Eq. (4.1) has at most one solution on I, where \(B(t)\) and \(C(t)\) are defined as in Theorem  3.1.
Proof
Let \(u(t)\) and \(v(t)\) be two solutions of Eq. (4.1) on I. From (4.1) and (4.7)-(4.10), we have
$$ \begin{gathered}[b] \bigl\vert u(t)-v(t) \bigr\vert \\ \quad \leq \bigl\vert b(t) \bigr\vert \int_{\alpha(t_{0})}^{\alpha (t)}\biggl[f_{1}(s) \bigl\vert u(s)-v(s) \bigr\vert +f_{2}(s) \int_{\alpha (t_{0})}^{s}g(\tau) \bigl\vert u(\tau)-v(\tau) \bigr\vert \Delta\tau\biggr]\Delta s \\ \qquad {}+ \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s) \bigl\vert u(s)-v(s) \bigr\vert +f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau) \bigl\vert u(\tau)-v(\tau ) \bigr\vert \Delta\tau\biggr]\Delta s , \quad t\in I. \end{gathered} $$
(4.11)
Applying Corollary 3.1 to (4.11), we get \(\vert u(t)-v(t) \vert \leq0\), \(t\in I\). Therefore \(u(t)\equiv v(t)\), that is, there is at most one solution to Eq. (4.1). □
Example 4.2
Assume \(\mathbb{T}=q^{\mathbb{N}_{0}}=\{ 1,q,q^{2},\ldots\}\) with \(q>1\) and consider the following Volterra-Fredholm type q-difference equation:
$$\begin{aligned} u(t) =& a(t)+b(t)\sum_{s=t_{0}}^{t} \Biggl[f_{1}(s)u(s)+f_{2}(s)\sum _{\tau=t_{0}}^{s}g(\tau)u(\tau)\Biggr] \\ &{}+\sum_{s=t_{0}}^{T}\Biggl[f_{1}(s)u(s)+f_{2}(s) \sum_{\tau=t_{0}}^{s}g(\tau)u(\tau )\Biggr],\quad t \in I, \end{aligned}$$
(4.12)
where \(u, a, b, f_{1}, f_{2}, g: I\rightarrow\mathbb{R}_{+}\) are functions, \(t_{0}, T\in q^{\mathbb{N}_{0}}\), \(T>t_{0}\) and \(I=[t_{0},T]\cap q^{\mathbb{N}_{0}}\).
Theorem 4.3
Assume that a is nondecreasing and \((q-1)tA(t)<1\). If
$$\beta:=\prod_{\tau=t_{0}}^{T/q}\bigl[1+(q-1)\tau \bigl(B(\tau)+C(\tau)+(q-1)\tau B(\tau)C(\tau)\bigr)\bigr]< 1+b(T), $$
then the solution \(u(t)\) of Eq. (4.12) satisfies the following inequality:
$$ u(t) \leq\frac{a(T)b(T)}{1+b(T)-\beta}\prod_{\tau=t_{0}}^{t/q} \bigl[1+(q-1)\tau\bigl(B(\tau)+C(\tau)+(q-1)\tau B(\tau)C(\tau)\bigr)\bigr],\quad t\in I, $$
(4.13)
where
$$\begin{aligned}& A(t) := \frac{b(qt)-b(t)}{(q-1)t}\sum_{s=t_{0}}^{qt} \Biggl[f_{1}(s)+f_{2}(s)\sum_{\tau=t_{0}}^{s}g( \tau)\Biggr] ,\qquad B(t):=\frac{A(t)}{1-(q-1)tA(t)}, \\& C(t) := b(t)\Biggl[f_{1}(t)+f_{2}(t)\sum _{\tau=t_{0}}^{t}g(\tau)\Biggr]. \end{aligned}$$
Proof
Note that \(\sigma(t)=qt\), \(\mu(t)=(q-1)t\) for any \(t\in q^{\mathbb{N}_{0}}\) and
$$e_{p}(t,t_{0})=\prod_{\tau=t_{0}}^{t/q} \bigl[1+(q-1)\tau p(\tau)\bigr] $$
for \(t>t_{0}\), where \(t, t_{0}, \tau\in q^{\mathbb{N}_{0}}\). Let \(u(t)\) be a solution of Eq. (4.12), we get
$$\begin{aligned} \bigl\vert u(t) \bigr\vert \leq& a(t)+b(t)\sum _{s=t_{0}}^{t}\Biggl[f_{1}(s) \bigl\vert u(s) \bigr\vert +f_{2}(s)\sum_{\tau =t_{0}}^{s}g( \tau) \bigl\vert u(\tau) \bigr\vert \Biggr] \\ &{}+\sum_{s=t_{0}}^{T}\Biggl[f_{1}(s) \bigl\vert u(s) \bigr\vert +f_{2}(s)\sum _{\tau =t_{0}}^{s}g(\tau) \bigl\vert u(\tau) \bigr\vert \Biggr],\quad t\in I. \end{aligned}$$
(4.14)
Then a suitable application of Corollary 3.1 to (4.14) yields the desired result (4.13). □
Example 4.3
Assume \(\mathbb{T}=\mathbb{R}\) and consider the following retarded Volterra-Fredholm type integral equation:
$$\begin{aligned} u(t) =& a(t)+b(t) \int_{\alpha(t_{0})}^{\alpha (t)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)u(\tau)\,\mathrm{d}\tau\biggr] \,\mathrm{d} s \\ &{}+\lambda \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s)u(s)+f_{2}(s) \int_{\alpha (t_{0})}^{s}g(\tau)u(\tau)\,\mathrm{d}\tau\biggr] \,\mathrm{d} s,\quad t\in I, \end{aligned}$$
(4.15)
where \(u, a, b,\alpha, f_{1}, f_{2}, g: I\rightarrow\mathbb{R}_{+}\) are continuous functions, \(t_{0}, T\in\mathbb{R}\), \(T>t_{0}\) and \(I=[t_{0},T]\).
Theorem 4.4
Assume that a is nondecreasing, \(\lambda\geq0\) is a constant, \(\alpha'(t)>0\), \(\alpha(t)\leq t\) and \(b'(t)\geq0\). If
$$\beta:=\exp\biggl( \int_{t_{0}}^{T}(A+C) (\tau)\,\mathrm{d}\tau\biggr)< 1+ \frac{b(T)}{\lambda}, $$
then the solution \(u(t)\) of Eq. (4.15) satisfies the following inequality:
$$ u(t) \leq\frac{a(T)b(T)}{\lambda+b(T)-\beta\lambda}\exp\biggl( \int _{t_{0}}^{t}(A+C) (\tau)\,\mathrm{d}\tau\biggr), \quad t\in I, $$
(4.16)
where we use the convention that \(\frac{1}{0}=+\infty\),
$$\begin{gathered} A(t) := b'(t) \int_{\alpha(t_{0})}^{\alpha (t)}\biggl[f_{1}(s)+f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau)\,\mathrm{d} \tau\biggr] \,\mathrm{d} s\quad\textit{and} \\ C(t) := b(t)\biggl[f_{1}\bigl(\alpha(t)\bigr)+f_{2}\bigl( \alpha(t)\bigr) \int_{\alpha(t_{0})}^{\alpha (t)}g(\tau)\,\mathrm{d} \tau\biggr] \alpha'(t). \end{gathered} $$
Proof
Note that \(\sigma(t)=t\), \(\mu(t)=0\) for any \(t\in\mathbb{R}\), and
$$e_{p}(t,t_{0})=\exp\biggl( \int_{t_{0}}^{t}p(\tau)\,\mathrm{d}\tau\biggr) $$
for \(t>t_{0}\). Let \(u(t)\) be a solution of Eq. (4.15), we have
$$\begin{aligned} \bigl\vert u(t) \bigr\vert \leq& a(t)+b(t) \int_{\alpha (t_{0})}^{\alpha(t)}\biggl[f_{1}(s) \bigl\vert u(s) \bigr\vert +f_{2}(s) \int_{\alpha (t_{0})}^{s}g(\tau) \bigl\vert u(\tau) \bigr\vert \,\mathrm{d}\tau\biggr] \,\mathrm{d} s \\ &{}+\lambda \int_{\alpha(t_{0})}^{\alpha(T)}\biggl[f_{1}(s) \bigl\vert u(s) \bigr\vert +f_{2}(s) \int_{\alpha(t_{0})}^{s}g(\tau) \bigl\vert u(\tau) \bigr\vert \,\mathrm{d}\tau\biggr] \,\mathrm{d} s,\quad t\in I. \end{aligned}$$
(4.17)
Then a suitable application of Theorem 3.1 to (4.17) yields the desired result (4.16). □

5 Conclusions

In this paper we have established some new retarded Volterra-Fredholm type integral inequalities on time scales. Unlike some existing results in the literature (e.g., [16, 20]), the integral inequalities considered in this paper involve the retarded term, which results in difficulties in the estimation on the explicit bounds of unknown functions \(u(t)\). These inequalities generalize and extend some known inequalities and can be used as tools in the qualitative theory of certain classes of retarded dynamic equations on time scales.

Acknowledgements

The author thanks the reviewers for their helpful and valuable suggestions and comments on this paper. This research was supported by the National Natural Science Foundation of China (No. 11671227) and the Project of Shandong Province Higher Educational Science and Technology Program (China) (No. J14LI09).

Competing interests

The author declares that there is no conflict of interests regarding the publication of this paper.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Hilger, S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg (1988) Hilger, S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg (1988)
2.
Zurück zum Zitat Adivar, M, Raffoul, YN: Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. 188, 543-559 (2009) MathSciNetCrossRefMATH Adivar, M, Raffoul, YN: Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. 188, 543-559 (2009) MathSciNetCrossRefMATH
3.
4.
Zurück zum Zitat Bi, L, Bohner, M, Fan, M: Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal. 68, 170-174 (2008) MathSciNetCrossRefMATH Bi, L, Bohner, M, Fan, M: Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal. 68, 170-174 (2008) MathSciNetCrossRefMATH
5.
Zurück zum Zitat Dogan, A, Graef, J, Kong, L: Higher-order singular multi-point boundary-value problems on time scales. Proc. Edinb. Math. Soc. 54, 345-361 (2011) MathSciNetCrossRefMATH Dogan, A, Graef, J, Kong, L: Higher-order singular multi-point boundary-value problems on time scales. Proc. Edinb. Math. Soc. 54, 345-361 (2011) MathSciNetCrossRefMATH
6.
Zurück zum Zitat Erbe, L, Jia, BG, Peterson, A: Belohorec-type oscillation theorem for second order sublinear dynamic equations on time scales. Math. Nachr. 284, 1658-1668 (2011) MathSciNetCrossRefMATH Erbe, L, Jia, BG, Peterson, A: Belohorec-type oscillation theorem for second order sublinear dynamic equations on time scales. Math. Nachr. 284, 1658-1668 (2011) MathSciNetCrossRefMATH
7.
Zurück zum Zitat Erbe, L, Jia, BG, Peterson, A: On the asymptotic behavior of solutions of Emden-Fowler equations on time scales. Ann. Mat. Pura Appl. 191, 205-217 (2012) MathSciNetCrossRefMATH Erbe, L, Jia, BG, Peterson, A: On the asymptotic behavior of solutions of Emden-Fowler equations on time scales. Ann. Mat. Pura Appl. 191, 205-217 (2012) MathSciNetCrossRefMATH
8.
Zurück zum Zitat Federson, M, Mesquita, JG, Slavik, A: Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 252, 3816-3847 (2012) MathSciNetCrossRefMATH Federson, M, Mesquita, JG, Slavik, A: Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 252, 3816-3847 (2012) MathSciNetCrossRefMATH
11.
Zurück zum Zitat Agarwal, R, Bohner, M, Peterson, A: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535-557 (2001) MathSciNetMATH Agarwal, R, Bohner, M, Peterson, A: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535-557 (2001) MathSciNetMATH
12.
Zurück zum Zitat Anderson, DR: Nonlinear dynamic integral inequalities in two independent variables on time scale pairs. Adv. Dyn. Syst. Appl. 3, 1-13 (2008) MathSciNet Anderson, DR: Nonlinear dynamic integral inequalities in two independent variables on time scale pairs. Adv. Dyn. Syst. Appl. 3, 1-13 (2008) MathSciNet
13.
Zurück zum Zitat Bohner, EA, Bohner, M, Akin, F: Pachpatte inequalities on time scale. J. Inequal. Pure Appl. Math. 6(1), Article ID 6 (2005) MathSciNetMATH Bohner, EA, Bohner, M, Akin, F: Pachpatte inequalities on time scale. J. Inequal. Pure Appl. Math. 6(1), Article ID 6 (2005) MathSciNetMATH
14.
Zurück zum Zitat Feng, Q, Meng, F, Zheng, B: Gronwall-Bellman type nonlinear delay integral inequalities on time scale. J. Math. Anal. Appl. 382, 772-784 (2011) MathSciNetCrossRefMATH Feng, Q, Meng, F, Zheng, B: Gronwall-Bellman type nonlinear delay integral inequalities on time scale. J. Math. Anal. Appl. 382, 772-784 (2011) MathSciNetCrossRefMATH
15.
Zurück zum Zitat Feng, Q, Zheng, B: Generalized Gronwall-Bellman-type delay dynamic inequalities on time scales and their applications. Appl. Math. Comput. 218, 7880-7892 (2012) MathSciNetMATH Feng, Q, Zheng, B: Generalized Gronwall-Bellman-type delay dynamic inequalities on time scales and their applications. Appl. Math. Comput. 218, 7880-7892 (2012) MathSciNetMATH
16.
Zurück zum Zitat Gu, J, Meng, F: Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235-242 (2014) MathSciNetMATH Gu, J, Meng, F: Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235-242 (2014) MathSciNetMATH
18.
Zurück zum Zitat Ma, QH, Pečarić, J: The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales. Comput. Math. Appl. 61, 2158-2163 (2011) MathSciNetCrossRefMATH Ma, QH, Pečarić, J: The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales. Comput. Math. Appl. 61, 2158-2163 (2011) MathSciNetCrossRefMATH
19.
Zurück zum Zitat Ma, QH, Wang, JW, Ke, XH, Pečarić, J: On the boundedness of a class of nonlinear dynamic equations of second order. Appl. Math. Lett. 26(11), 1099-1105 (2013) MathSciNetCrossRefMATH Ma, QH, Wang, JW, Ke, XH, Pečarić, J: On the boundedness of a class of nonlinear dynamic equations of second order. Appl. Math. Lett. 26(11), 1099-1105 (2013) MathSciNetCrossRefMATH
20.
Zurück zum Zitat Meng, F, Shao, J: Some new Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444-451 (2013) MathSciNetMATH Meng, F, Shao, J: Some new Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444-451 (2013) MathSciNetMATH
21.
Zurück zum Zitat Pachpatte, DB: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7, Article ID 143 (2006) MathSciNetMATH Pachpatte, DB: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7, Article ID 143 (2006) MathSciNetMATH
22.
23.
Zurück zum Zitat Saker, SH: Nonlinear dynamic inequalities of Gronwall-Bellman type on time scales. Electron. J. Qual. Theory Differ. Equ. 2011, 86 (2011) MathSciNetMATH Saker, SH: Nonlinear dynamic inequalities of Gronwall-Bellman type on time scales. Electron. J. Qual. Theory Differ. Equ. 2011, 86 (2011) MathSciNetMATH
24.
Zurück zum Zitat Saker, SH: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633-645 (2011) MathSciNetMATH Saker, SH: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633-645 (2011) MathSciNetMATH
25.
Zurück zum Zitat Sun, YG: Some sublinear dynamic integral inequalities on time scales. Math. Inequal. Appl. 15, 331-341 (2012) MathSciNetMATH Sun, YG: Some sublinear dynamic integral inequalities on time scales. Math. Inequal. Appl. 15, 331-341 (2012) MathSciNetMATH
26.
Zurück zum Zitat Sun, YG, Hassan, T: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220, 221-225 (2013) MathSciNetMATH Sun, YG, Hassan, T: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220, 221-225 (2013) MathSciNetMATH
27.
Zurück zum Zitat Wong, F, Yeh, CC, Hong, CH: Gronwall inequalities on time scales. Math. Inequal. Appl. 9, 75-86 (2006) MathSciNetMATH Wong, F, Yeh, CC, Hong, CH: Gronwall inequalities on time scales. Math. Inequal. Appl. 9, 75-86 (2006) MathSciNetMATH
30.
Zurück zum Zitat Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001) CrossRefMATH Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001) CrossRefMATH
31.
Zurück zum Zitat Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) CrossRefMATH Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) CrossRefMATH
32.
Zurück zum Zitat Pachpatte, BG: Bounds on certain integral inequalities. J. Inequal. Pure Appl. Math. 3, Article ID 47 (2002) MathSciNetMATH Pachpatte, BG: Bounds on certain integral inequalities. J. Inequal. Pure Appl. Math. 3, Article ID 47 (2002) MathSciNetMATH
Metadaten
Titel
A class of retarded Volterra-Fredholm type integral inequalities on time scales and their applications
verfasst von
Haidong Liu
Publikationsdatum
01.12.2017
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2017
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-017-1573-y

Weitere Artikel der Ausgabe 1/2017

Journal of Inequalities and Applications 1/2017 Zur Ausgabe